摘要
Background: Although fasting plasma glucose (FPG) has been highly recommended as the sole test for diabetes screening, the efficacy of FPG alone for diabetes screening is potentially limited due to its low sensitivity. The aim of this study was to improve the efficacy of FPG for diabetes screening using urinary glucose (UG). Methods: This study was initiated on November 12, 2015, and ended on June 28, 2016. A representative sample of individuals aged between 18 and 65 years, with no history of diabetes, from 6 cities in Jiangsu Province participated in this study. A 75-g oral glucose tolerance test was used to diagnose diabetes. All urine samples were collected within 2 h of oral glucose loading to measure UG. Partial correlation analyses were used to evaluate the associations between UG and other glycemic variables, including FPG, 2-h plasma glucose (2h-PG), and glycated hemoglobin A 1 c, after adjustment for age. Tile perfbnnance of UG was evaluated using a receiver operating characteristic (ROC) curve analysis. Results: Of the 7485 individuals included, 8% were newly diagnosed with diabetes and 48.7% had prediabetes. The areas under the ROC curves for UG were 0.75 for estimation of 2h-PG ≥7.8 mmol/L and 0,90 for 2h-PG ≥11.1 mmol/L, respectively. The sensitivity and specificity of UG were 52.3% and 87.8%, respectively, for 2h-PG ≥7.8 mmol/L (cutoff point ≥130 mg), and 83.5% and 87.5%, respectively, for 2h-PG ≥11.1 mmol/L (cutoff point ≥ 178.5 mg). The combination of FPG and UG demonstrated a significantly higher sensitivity than that of FPG alone for the identification of diabetes ([483/597] 80.9% vs. [335/597] 56.1%, x2 = 85.0, P 〈 0.001) and glucose abnormalities ([2643/4242] 62.3% vs. [2365/4242] 55.8%, x2 = 37.7 P 〈 0.001). Conclusions: The combination of UG and FPG substantially improves the efficacy of using FPG alone for diabetes screening; this combination might be a practical screening tool and is worth being recommended in the future.
Background: Although fasting plasma glucose (FPG) has been highly recommended as the sole test for diabetes screening, the efficacy of FPG alone for diabetes screening is potentially limited due to its low sensitivity. The aim of this study was to improve the efficacy of FPG for diabetes screening using urinary glucose (UG). Methods: This study was initiated on November 12, 2015, and ended on June 28, 2016. A representative sample of individuals aged between 18 and 65 years, with no history of diabetes, from 6 cities in Jiangsu Province participated in this study. A 75-g oral glucose tolerance test was used to diagnose diabetes. All urine samples were collected within 2 h of oral glucose loading to measure UG. Partial correlation analyses were used to evaluate the associations between UG and other glycemic variables, including FPG, 2-h plasma glucose (2h-PG), and glycated hemoglobin A 1 c, after adjustment for age. Tile perfbnnance of UG was evaluated using a receiver operating characteristic (ROC) curve analysis. Results: Of the 7485 individuals included, 8% were newly diagnosed with diabetes and 48.7% had prediabetes. The areas under the ROC curves for UG were 0.75 for estimation of 2h-PG ≥7.8 mmol/L and 0,90 for 2h-PG ≥11.1 mmol/L, respectively. The sensitivity and specificity of UG were 52.3% and 87.8%, respectively, for 2h-PG ≥7.8 mmol/L (cutoff point ≥130 mg), and 83.5% and 87.5%, respectively, for 2h-PG ≥11.1 mmol/L (cutoff point ≥ 178.5 mg). The combination of FPG and UG demonstrated a significantly higher sensitivity than that of FPG alone for the identification of diabetes ([483/597] 80.9% vs. [335/597] 56.1%, x2 = 85.0, P 〈 0.001) and glucose abnormalities ([2643/4242] 62.3% vs. [2365/4242] 55.8%, x2 = 37.7 P 〈 0.001). Conclusions: The combination of UG and FPG substantially improves the efficacy of using FPG alone for diabetes screening; this combination might be a practical screening tool and is worth being recommended in the future.