期刊文献+

铁路旅客购票需求预测模型研究 被引量:4

Forecasting Model for Railway Passenger Ticketing Demand
下载PDF
导出
摘要 铁路旅客购票需求是列车票额分配的重要依据,各区间旅客的购票需求即为旅客的出行需求,在预售期间有不同的趋势规律。本文基于旅客购票历史数据,分析同一季节不同区间旅客的购票分布,提出区间旅客平均购票强度的概念,利用购票强度来描述预售期各OD票额的动态需求。将购票提前天数、购票渠道、单次购票人数、出行OD和票价等旅客购票行为的关键特征变量作为影响预测日期的属性向量,提出了非线性回归支持向量机的预测模型,对预售期每日的区间旅客购票需求进行预测。最后通过算例对模型进行了可行性验证。 Railway passenger ticketing demand(RPTD) is the critical basis for a train tickets allocation, RPTD trend in each section performed differently in the pre-sale period. Based on history ticketing data, this paper put forward the concept of average section ticketing intensity(TI) by analyzing the ticketing distribution during the pre-sale period. The TI was applied to describe the dynamic ticket demand of each origin-destination(OD). The critical characteristic variables of passenger ticketing behavior, such as advance ticketing days, purchasing channel, the number of tickets for once purchasing, travel OD and ticket price, were taken as the attribute vectors which affected forecasting date. A prediction model of nonlinear regression support vector machine was proposed for forecasting the daily tickets demand for each OD in the pre-sale period. Finally, the feasibility of the model was verified by an example.
作者 刘帆洨 彭其渊 LIU Fan-xiao;PENG Qi-yuan(School of Transportation and Logistics,Southwest Jiaotong University,Chengdu 610031,China;National United Engineering Laboratory of Integrated and Intelligent Transportation,Southwest Jiaotong University,Chengdu 610031,China)
出处 《交通运输工程与信息学报》 2018年第2期50-56,共7页 Journal of Transportation Engineering and Information
基金 中国铁路总公司科技研究开发计划(2016X008-J) 中国铁路总公司科技研究开发计划重大课题(Z2017-X002)
关键词 铁路旅客 购票需求 平均购票强度 支持向量机 预测 railway passenger ticketing demand average ticketing intensity support vector machine(SVM) forecasting
  • 相关文献

参考文献13

二级参考文献77

共引文献189

同被引文献28

引证文献4

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部