期刊文献+

基于置信规则库推理的二择众仓分类方法 被引量:2

Two-Value Judgment Classification Approach Based on Belief Rule-Base Reasoning
下载PDF
导出
摘要 针对线性组合方式所构建的置信规则库存在常常无法准确发挥前件属性权重的效能,且随着评价等级个数的增加,新激活权重公式往往会对结果造成不利影响的不足,本文在现有置信规则库推理分类算法的基础上,提出二择众仓决策法,以此改进置信规则库决策系统。首先仅设置两个规则的后件评价等级,对一个决策问题仅做出二择判定,即回答是与否;其次,设置多个置信规则库同时处理若干个子问题;最后通过众仓决策方式融合多个子问题的结果,进而解决最终的分类问题。实验结果表明,改进后的置信规则库推理分类方法可行有效。 The weight of antecedent attributes can' t work accurately in the linear combinational belief rule based system usually. Simultaneously,with an increase in the number of evaluation ranks,the new weight activation formula will have negative effects on results. Aiming at the above drawbacks,this paper proposes a twovalue and multi-base reasoning method based on the existing belief rule based inference classification algorithm to improve the belief rule based decision system. The evaluation of belief rules in the conclusion is divided into two ranks firstly,which means making a two-value judgment on a decision problem. Then many belief rule bases are set to solve some sub problems simultaneously. Finally results of many sub problems by multi-base reasoning method are mixed to solve the classification problem. Experimental results show the feasibility and effectiveness of the proposed belief rule base reasoning classfication method.
作者 方志坚 傅仰耿 陈建华 Fang Zhijian, Fu Yanggeng, Chen Jianhua(College of Mathematics and Computer Science, Fuzhou University, Fuzhou, 350116, Chin)
出处 《数据采集与处理》 CSCD 北大核心 2018年第3期477-486,共10页 Journal of Data Acquisition and Processing
基金 国家自然科学基金(71501047)资助项目 福建省自然科学基金(2015J1248)资助项目 福州大学科技发展基金(2014-XQ-26)资助项目
关键词 置信规则库 分类 二择众仓 证据推理 投票 belief rule base classification two value judgment evidential reasoning voting
  • 相关文献

参考文献1

二级参考文献29

  • 1Yang Jianbo,Liu Jun, Wang Jin, et al. Belief rule-base infer-ence methodology using the evidential reasoning approach-RIMERfJ]. IEEE Transactions on Systems, Man and Cyber-netics: Part A Systems and Humans, 2006,36(2): 266-285.
  • 2Dempster A P. A generalization of Bayesian inference [J].Journal of the Royal Statistical Society: Series B Method-ological, 1968,30(2): 205-247.
  • 3Shafer G. A mathematical theory of evidence[M]. Prince-ton, USA: Princeton University Press, 1976.
  • 4Hwang C L,Yoon K. Methods for multiple attribute deci-sion making[M]//Multiple Attribute Decision Making. Ber-lin, Heidelberg: Springer, 1981: 58-191.
  • 5Zadeh LA. Fuzzy sets[J]. Information and Control, 1965,8(3): 338-353.
  • 6Sun R. Robust reasoning: integrating rule-based and similarity-based reasoning[J]. Artificial Intelligence, 1995,75(2): 241-295.
  • 7Zhou Zhijie, Yang Jianbo, Hu Changhua. Confidence expertsystem rule base and complex system modeling[M]. Bei-jing: Science Press,2011.
  • 8Yang Jianbo, Liu Jun, Xu Dongling, et al. Optimization mod-els for training belief-rule-based systems [J]. IEEE Transac-tions on Systems,Man and Cybernetics: Part A Systemsand Humans, 2007,37(4): 569-585.
  • 9Jiang Jiang, Li Xuan, Zhou Zhijie, et al. Weapon systemcapability assessment under uncertainty based on the evi-dential reasoning approach[J]. Expert Systems with Appli-cations, 2011,38(11): 13773-13784.
  • 10Zhou Zhijie, Hu Changhua, Yang Jianbo, et al. Online up-dating belief rule based system for pipeline leak detectionunder expert intervention[J]. Expert System with Applica-tion, 2009, 36(4): 7700-7709.

共引文献3

同被引文献7

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部