期刊文献+

基于协同过滤推荐算法的公园个性化推荐系统的研建 被引量:1

Park Personalization Recommendation System Based on the Collaborative Filtering Recommendation Algorithm
下载PDF
导出
摘要 当今,公园游玩已经是大众日常休闲娱乐的普遍选择,但由于公园种类繁多以及相关信息的冗杂和有效信息的缺乏,游客不易选择适合自己出行计划的公园。随着互联网的迅猛发展,推荐系统已经渗透到了互联网的各个方面,协同过滤技术是目前应用最为广泛和成功的技术。虽然协同过滤推荐技术取得了很大的成功,但传统的算法本身还存在一些问题,包括数据稀疏问题、冷启动性问题,这些问题都是协同过滤必须解决的问题。基于此背景,本文对协同过滤推荐算法中的数据稀疏和冷启动问题做了深入的分析和探讨,并将改进的方案运用到一个具有推荐功能的公园个性化推荐系统中,以解决人们日常的休闲娱乐需求。 Today,more and more people tend to play in the park at their leisure time. But the redundancy of the related information and the lack of effective information usually result in the aimlessness and restrictiveness of people's trip. With the rapid development of the internet,recommend system has been penetrated into all parts of the internet,and collaborative filtering is the most widely-used and successful technology currently. However,the traditional algorithm itself has some problems,including scalability problem and coldstart problem which are the problems need to be solved. This paper,based on this background,makes in-depth analysis and exploration in scalability problem and cold-start problem in collaborative filtering recommendation algorithm and applies the improved method to a park personalization recommendation system with a recommend function to solve people's daily needs of leisure and entertainment.
作者 张伊 张军霞 邹雨纯 徐丹阳 王丽婷 ZHANG Yi;ZHANG Junxia;ZOU Yuchun;XU Danyang;WANG Liting(School of Information Science & Technology,Beijing Forestry University,Beijing 100083,China)
出处 《现代信息科技》 2018年第4期82-84,共3页 Modern Information Technology
基金 北京林业大学"北京市大学生科学研究与创业行动计划"(项目编号:S201710022070)
关键词 协同过滤 公园个性化推荐 数据稀疏 冷启动 collaborative filtering park personalization recommendation data sparsity cold-start
  • 相关文献

参考文献4

二级参考文献34

  • 1世界遗产分类评定标准[J].建筑与文化,2004(6):34-35. 被引量:1
  • 2刘玉芳.国际城市评价指标体系研究与探讨[J].城市发展研究,2007,14(4):88-92. 被引量:50
  • 3P. Resnick, H. R. Varian. Recommender systems, Commun. ACM, vol. 40, iss. 3, pp. 56- 58,1997.
  • 4R. Burke. Hybrid Recommender Systems:Survey and Experiments, User Modeling and User-Adapted Interaction, vol. 12, iss. 4,pp. 331-370,2002.
  • 5C. Zeng,C. -X. Xing, L. -Z. Zhou. Similarity measure and instance selection for collaborative filtering, presented at the Proceedings of the 12th inter nation al conference on World Wide Web,Budapest, Hungary, 2003.
  • 6J. S. Breese. Empirical Analysis of Predictive Algorithms for Collaborative Filtering,in Proceedings of 14th Conference on Uncertainty in Artificial Intelligence, 1998, pp. 43 - 52,1998.
  • 7B Sarw ar, G Karypis,J Konstan , et al. Item based collaborative filtering recommendation algorithms1 In:Proc of the 10th Int. 1 World Wide Web Con fl New York:ACM Press,20011,285-295.
  • 8FIDEL C.,V'CTOR C.,DIEGO F.& VREIXO O. Com- parison of Collaborative Fihering Algorithms: Limita- tions of Current Techniques and Proposals for Scal- able, High-Performance Recommender Systems[J]. ACM Transactions on the Web, 2011,5(1):2-33.
  • 9Xiaoyuan Su&Taghi M. K. A Survey of Collaborative Filtering Techniques[J]. Advances in Artificial Intelli- gence, 2009,(1):1-19.
  • 10Sarwar, B., Karypis, G., Konstan, J., and Riedl, J. Rec- ommender systems for large-scale e-commerce: Scal- able neighborhood formation using clustering[C]. In Proceedings of the Fifth International Conference on Computer and Information Technology,2002.

共引文献16

同被引文献5

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部