期刊文献+

基于格式塔原则的线性建筑群空间分布模式提取

Extraction of Spatial Distribution Model of Linear Building Group Based on Gestalt Principles
下载PDF
导出
摘要 为了解决困扰地理信息系统学者的空间群目标提取难题,在街区矢量图中识别出线性的建筑群目标,笔者以Gestalt视觉识别原则作为度量准则,将线性的建筑群目标表示为马尔科夫链模型,利用置信传播算法进行求解。实验结果表明,与传统的聚类方法相比,该方法的可识别性有了较大的提高;与主流的机器学习方法相比,该方法对样本的依赖程度较低。 In this paper, in order to solve the puzzles of extraction of space group troubled plagued scholars of geography information system and recognize linear building group objects in vector diagram of block, taken Gestalt vision recognition principles as measure criterion, linear building group objects are shown as Markov chain. And, the authors solve the problems by using Belief Propagation algorithm. The experiment results shows that, compared with the traditional clustering methods, the identifiability of this method has been greatly improved; compared with the mainstream machine learning methods, the dependence severity of this method on sample is lower.
作者 龚超 邓浩 GONG Chao;DENG Hao(Central South University,Hunan Changsha 410083 China)
机构地区 中南大学
出处 《科技创新与生产力》 2018年第5期37-41,共5页 Sci-tech Innovation and Productivity
关键词 空间分布模式 空间群目标 格式塔视觉识别原则 马尔科夫链 置信传播算法 spatial distribution model space groups object Gestalt vision recognition principles Markov chain Belief Propagation algorithm
  • 相关文献

参考文献2

二级参考文献27

  • 1[1]Vapnik V.The Nature of Statistical Learning Theory.New York:Springer-Verlag,1995
  • 2[2]Cortes CVapnik V.Support Vector Networks.Machine Learning,1995;20:273~297
  • 3[3]Osuna E,Freund R,Girosi F.Training Support Vector Machines:An Application to Face Detection.In:Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition,New York:IEEE,1997:130~136
  • 4[4]Dumais S,Platt J,Heckerman D,Sahami M.Inductive Learning Algorithms and Representations for Text Categorization.In:Proceedings of the 7th International Conference on Information and Knowledge Management,1998
  • 5[5]Joachims T.Text Categorization with Support Vector Machines:Learning with Many Relevant Features.In:Proceedings of the 10th European Conference on Machine Learning,1998
  • 6[6]Courant R,Hilbert D.Methods of Mathematical Physics. Volume 1,Berlin:Springer-Verlag,1953
  • 7[7]Stitson M O,Weston J A E,Gammerman A,Vovk V,Vapnik V.Theory of Support Vector Machines.Technical Report CSD-TR-96-17, Royal Holloway University of London,1996.12.31
  • 8[8]Osuna E,Freund R,Girosi F.Support Vector Machines:Training and Applications.AI Memo 1602,MIT AI Lab,1997
  • 9[9]Osuna E,Freund R,Girosi F.An Improved Training Algorithm for Support Vector Machines.In:Principe J,Gile L,Morgan N,Wilson E eds.,Proceedings of the 1997 IEEE Workshop on Neural Networks for Signal Processing,New York:IEEE,1997:276~285
  • 10[10] Joachims T.Making Large-Scale SVM Learning Practical.In:Schol-kopf B,Burges C J C,Smola A eds.,Advances in Kernel Methods Support Vector Learning,Cambridge,MA:MIT Press,1998:169~184

共引文献151

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部