摘要
为了解决困扰地理信息系统学者的空间群目标提取难题,在街区矢量图中识别出线性的建筑群目标,笔者以Gestalt视觉识别原则作为度量准则,将线性的建筑群目标表示为马尔科夫链模型,利用置信传播算法进行求解。实验结果表明,与传统的聚类方法相比,该方法的可识别性有了较大的提高;与主流的机器学习方法相比,该方法对样本的依赖程度较低。
In this paper, in order to solve the puzzles of extraction of space group troubled plagued scholars of geography information system and recognize linear building group objects in vector diagram of block, taken Gestalt vision recognition principles as measure criterion, linear building group objects are shown as Markov chain. And, the authors solve the problems by using Belief Propagation algorithm. The experiment results shows that, compared with the traditional clustering methods, the identifiability of this method has been greatly improved; compared with the mainstream machine learning methods, the dependence severity of this method on sample is lower.
作者
龚超
邓浩
GONG Chao;DENG Hao(Central South University,Hunan Changsha 410083 China)
出处
《科技创新与生产力》
2018年第5期37-41,共5页
Sci-tech Innovation and Productivity
关键词
空间分布模式
空间群目标
格式塔视觉识别原则
马尔科夫链
置信传播算法
spatial distribution model
space groups object
Gestalt vision recognition principles
Markov chain
Belief Propagation algorithm