期刊文献+

基于犹豫语言决策模型的数据产品服务商选择 被引量:2

Selection of data product service provider based on hesitant fuzzy linguistic decision-making model
下载PDF
导出
摘要 针对属性值为犹豫模糊语言元的多属性决策问题,建立基于犹豫模糊语言可能度的线性分配决策模型。首先,基于犹豫模糊语言元的包络转化方法,分别定义了犹豫模糊语言元间的可能度和相对差异指数等概念;其次探究发现可能度矩阵和相对差异矩阵均为互补判断矩阵,并设计了犹豫模糊语言元的最优度计算公式;最后,在犹豫模糊语言信息环境下,构建了一种新的线性分配决策模型用以确定各备选方案的综合最优度,进而遴选出最优方案。实验结果表明,提出的决策模型是可行和有效的。 For the hesitant fuzzy linguistic information Multi-Attribute Decision Making(MADM)problems, based on the hesitant fuzzy linguistic possibility degree, a linear assignment decision making model is developed. Firstly, with the envelope transformation method of Hesitant Fuzzy Linguistic Element(HFLE), the concepts of possibility degree and relative difference index between the HFLE are introduced. Then, some properties are discussed, in which the possibility degree matrix and relative difference matrix are fuzzy complementary judgment matrices, and the optimal degree of HFLE is constructed. In the end, under the hesitant fuzzy linguistic environment, a novel linear assignment decision making model is proposed to determine the collected optimal degree of alternatives, and the most desirable alternative is selected. The numerical example shows that the rationality and effectiveness of the developed model.
作者 戴意瑜 DAI Yiyu(Administration of Information Technology,Huaqiao University,Xiamen,Fujian 361021,China)
出处 《计算机工程与应用》 CSCD 北大核心 2018年第12期133-137,共5页 Computer Engineering and Applications
基金 2017年中央级普通高校改善基本办学条件专项资金(No.17C22010)
关键词 犹豫模糊语言集 可能度 相对差异指数 最优度 线性分配模型 hesitant fuzzy linguistic set possibility degree relative difference index optimal degree linear assignment model
  • 相关文献

参考文献4

二级参考文献28

  • 1李德毅,刘常昱.论正态云模型的普适性[J].中国工程科学,2004,6(8):28-34. 被引量:896
  • 2徐泽水,陈剑.一种基于区间直觉判断矩阵的群决策方法[J].系统工程理论与实践,2007,27(4):126-133. 被引量:140
  • 3Baltrunas L, Makcinskas T, Ricci F. Grouprecommendations with rank aggregation and collaborativefiltering[C]. Proc of the 4th ACM Conf onRecommender Systems. New York: ACM, 2010: 119-126.
  • 4Salamo M, Mc Carthy K, Smyth B. Generatingrecommendations for consensus negotiation in grouppersonalization services[J]. Personal and UbiquitousComputing, 2012, 16(5): 597-610.
  • 5Masthoff J, Gatt A. In pursuit of satisfaction andthe prevention of embarrassment: Affective state ingroup recommender systems[J]. User Modeling and User-Adapted Interaction, 2006, 16(3/4): 281-319.
  • 6Pujahari A, Padmanabhan V. A new grouping methodbased on social choice strategies for group recommendersystem[M]. India: Springer, 2015: 325-332.
  • 7Boratto L, Carta S. Modeling the preferences of a groupof users detected by clustering: A group recommendationcase-study[C]. Proc of the 4th Int Conf on WebIntelligence, Mining and Semantics. New York: ACM,2014: 16.
  • 8Ali I, Kim S W. An effective approach to grouprecommendation based on belief propagation[C]. Proc ofthe 30th Annual ACM Symposium on Applied Computing.New York: ACM, 2015: 1148-1153.
  • 9Salehi Abari A, Boutilier C. Preference-oriented socialnetworks: Group recommendation and inference[C]. Procof the 9th ACM Conf on Recommender Systems. NewYork: ACM, 2015: 35-42.
  • 10Martinez L, Barranco M J, Perez L G, et al. A knowledgebased recommender system with multigranular linguisticinformation[J]. Int J of Computational IntelligenceSystems, 2008, 1(3): 225-236.

共引文献44

同被引文献17

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部