期刊文献+

林业运动模糊图像复原的融合正则化方法 被引量:4

Forestry blurred image restoration method based on synthetic regularization
下载PDF
导出
摘要 林业机器人在林业环境中进行作业时,很容易因为滑动、地面障碍物的碰撞等原因发生小幅的无规律运动导致机器人相机采集的图像发生运动模糊,对后续图像信息提取造成很大的影响。针对这一问题,提出了林业运动模糊图像复原的融合正则化方法。先建立包含L_1/L_2范数正则项的代价函数,求解运动模糊核。再通过图像梯度先验正则项及稀疏正则项构建代价函数,对清晰图像求解。引入的L_1/L_2范数正则项及图像梯度先验正则项对稀疏表示正则项容易产生块效应的问题进行了弥补,因而获得了令人满意的效果。对人工合成的运动模糊图像和自然条件下真实运动模糊图像进行的实验验证了该算法的有效性。 For forestry robots, it is easily to be affected by slightly irregular movement such as sliding, collision of ground obstacles and etc., which will lead to motion blurred images acquired by robot camera, and will greatly influence the results of subsequent information extraction. In order to solve this problem, the forestry blurred image restoration method based on synthetic regularization is proposed. Firstly, a cost function containing L1/L2 norm regularization is set up to solve motion blur kernel. Then, another cost function consisting of image gradient prior regularization and sparse regularization are built to acquire the target clear image. The introduction of L1/L2 norm regularization and image gradient prior regularization can make up blocking problems caused by sparse representation regularization, thus satisfactory results are obtained. Finally, the experimentd results of the synthetic and the natural real motion blurred images verify the effectiveness of the proposed method.
作者 赵汐璇 阚江明 ZHAO Xixuan;KAN Jiangming(School of Technology,Beijing Foresty University,Beijing 100083,China)
出处 《计算机工程与应用》 CSCD 北大核心 2018年第12期160-164,250,共6页 Computer Engineering and Applications
基金 国家自然科学基金(No.31570713)
关键词 运动模糊图像 图像盲复原 稀疏表达 梯度约束 归一化范数 motion blurred image image blind restoration sparse representation gradient constraint normalized norm
  • 相关文献

参考文献1

二级参考文献16

  • 1Gonzalez RC, Woods RE, Wrote; Ruan QQ, Ruan YZ, et al., Trans. Digital Image Processing. 2nd ed., Beijing: Publishing House of Electronics Industry, 2003. 1-220.
  • 2You Y, Kaveh M. A regularization approach to joint blur identification and image restoration. IEEE Trans. on Image Processing, 1996,5(3):416-428. [doi: 10.1109/83.491316].
  • 3Chan TF, Wong CK. Total variation blind deconvolution. IEEE Trans. on Image Processing, 1998,7(3):370-375. [doi: 10.1109/83. 661187].
  • 4Roth S, Black MJ. Fields of experts: A framework for learning image priors. In: Cordelia S, Stefano S, Carlo T, eds. Proc. of the IEEE Computer Society Conf. on Computer Vision and Pattern Recognition. San Diego: The IEEE Computer Society, 2005. 860-867. [doi: 1O.1109/CVPR.2005.160].
  • 5Fergus R, Singh B, Hertzmann A, Roweis ST, Freeman WT. Removing camera shake from a single photograph. ACM Trans. on Graphics, 2006,25(3):787-794. [doi: 10.1145/1141911.1141956].
  • 6Shan Q, Jia J, Agarwala A. High-Quality motion deblurring from a single image. ACM Trans. on Graphics, 2008,27(3):Article 73. [doi: 10.114511399504.1360672].
  • 7Shao WZ, Wei ZH. Super-Resolution reconstruction based on generalized Huber-MRF image modeling. Ruan Jian Xue Baol Journal of Software, 2007,18(10):2434-2444 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/18/2434.htm [doi: 10. 1360/jos182434].
  • 8Gu YT, Wu EH. Image-Analogies based super resolution. Ruan Jian Xue Bao/Journal of Software, 2008,19(4):851-860 (in Chinese with English abstract). http://www.jos.org.cnlI000-9825/19/85I.htm [doi: 10.3724/SP.J.IOOI.2008.00851].
  • 9Cai JF, Ji H, Liu CQ, Shen ZW. Blind motion deblurring using multiple images. ELSEVIER Journal of Computational Physics, 2009,228(14):5057-5071. [doi: 10.1016/j.jcp.2009.04.022].
  • 10Almeida MSC, Almeida LB. Blind and semi-blind deblurring of natural images. IEEE Trans. on Image Processing, 2010,19(1): 36-52. [doi: 1O.1109/TIP.2009.2031231].

共引文献12

同被引文献24

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部