期刊文献+

基于粗糙集理论的设备缺陷大数据分析 被引量:1

Big Data Analysis of Equipment Defects Based on Rough Set Theory
下载PDF
导出
摘要 针对变电运维室近几年来积累的大量设备缺陷数据,采用粗糙集理论对缺陷数据按照不同属性进行分类,分析同一属性数据中所隐含的规律,从而帮助运维人员找出设备缺陷的真正原因,指导班组正确、彻底地处理设备缺陷,消除电网安全隐患.同时采用本文的数据分析方法,对熔丝熔断缺陷等多个专项进行了成功地分析和总结,有效提高了缺陷处理的准确性,减少了非计划性停电的次数. In this paper,according to the large amount of equipment defect data,which accumulated in the substation operation department in recent years,the rough set theory is used to classify the defect data according to the different attributes and analyze the hidden regulations in the same attribute data,in order to help the operation and maintenance personnel to find out the real cause of the equipment defect,and guide teams correctly and thoroughly deals with the equipment defects and eliminate the hidden danger of power grid security.Through the method of data analysis in this paper,many special items,such as fuse fusing defects,are successfully analyzed and summarized,which effectively improving the accuracy of the defect treatment and reducing the number of unplanned power outage effectively.
作者 陈超 席俞佳 归宇 章璨 CHEN Chao;XI Yujia;GUI Yu;ZHANG Can(Huzhou Powcr Supply Company,Zhcjiang Elcctric Power Corporation,Statc Grid,Huzhou 313000,China)
出处 《湖州师范学院学报》 2018年第4期61-63,共3页 Journal of Huzhou University
关键词 设备缺陷 大数据 粗糙集 equipment defect big data rough set theory-
  • 相关文献

参考文献5

二级参考文献4

共引文献67

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部