期刊文献+

弹性水击情况下随机非线性水轮机的概率分布控制 被引量:1

Probability distribution control of stochastic nonlinear hydro-turbine with elastic water column
下载PDF
导出
摘要 针对随机激励下基于弹性水击的非线性水轮机系统,提出了一种新的概率分布控制方法。该方法首先采用正交分解和反馈理论的方法建立一个水轮机系统的耗散哈密顿模型。然后,利用获得耗散不可积哈密顿系统精确平稳解的技术,设计一个基于概率分布的控制方法,从而可以得到水轮机系统输出的一个预先设定的稳态概率密度函数(SPDF)值。此外,系统的稳定性分析是通过李雅普诺夫函数方法来证明受控系统的转移概率密度收敛于预先设定的稳态概率密度函数值。最后,通过系统仿真表明所提出的控制策略能够达到预期的控制效果,即系统输出量的转移概率密度能够在较短的时间里逼近到预先设定的目标稳态概率密度函数。 A novel probability distribution control method was proposed for hydro-turbine systems with e-lastic water column under stochastic disturbances. The method of orthogonal decomposition and feedback theory was used to build a dissipated Hamiltonian model for the hydro-turbine system. Furthermore,inorder to obtain a pre-sjDecified stationary probability density function ( SPDF) of hydro-turbine system out-put , a probability shaping control metliod was designed based on the technique for obtaining the exact sta-tionary solutions of tlie disi{)ated non-integrable Hamiltonian systems. In addition, the Lyapmethod was employed to prove the transient PDF of the controlled system do converge toSPDF. Finally, system simulation shows effective control results under the proposed control strategy, i. e. the output transient probability density of tiie system will approach the target SPDF in a short time.
作者 丁云飞 朱晨烜 DING Yun-fei;ZHU Chen-xuan(School of Electric,Shanghai Dianji University,Shanghai 200240,Chin)
出处 《电机与控制学报》 EI CSCD 北大核心 2018年第9期91-97,共7页 Electric Machines and Control
基金 国家自然科学基金(11302123) 上海市浦江人才计划(15PJ1402500) 上海市教育委员会科研创新项目(14YZ163) 上海市教育委员会和上海市教育发展基金会"晨光计划"(13CG63)
关键词 非线性随机系统 水轮机 稳态概率密度函数 反馈控制 FPK方程 stochastic nonlinear system hydro-turbine stationary probability density function feedback control fokker planck kolmogorov equations
  • 相关文献

参考文献5

二级参考文献79

  • 1吴安静.在线粒度监控在炭素生产中的应用[J].世界有色金属,2007(2):56-58. 被引量:1
  • 2Nwankpa C O, Shahidehpour S M. A probabilistic approach to bulk power transmission systems analysis. Power Symposium, 1989. Proceedings of the Twenty-First Annual North American, 1989, (9-10) : 88 - 94.
  • 3Byung H L, Kwang Y L. A study on voltage collapse mechanism in electric power systems. IEEE Transactions on power system, 1991, 6(3) :914-921.
  • 4Qiu J, Shahidehpour S M, Schuss Z. Effect of small random perturbations on power systems dynamics and its reliability evaluation . IEEE Transactions on power systems, 1989, 4 (1) :197-204.
  • 5Nwankpa C O, Shahidehpour S M, Schuss Z. A stochastic approach to small disturbance stability analysis. IEEE. Transactions on power systems, 1992, 17(4) :1519 - 1528.
  • 6Zhu W Q, Yang. Stochastic averaging of quasi-non-interagable Hamiltonian system. ASME Journal of Applied Mechanics, 1997,64 : 157 - 164.
  • 7Zhu W Q, Ying Z G. Optimal nonlinear feedback control of quasi-Hamiltonian system. Science in China, Series A, 1999,42 : 1213 - 1219.
  • 8Astrom K J. Introduction to stochastic control theory[M]. San Diegon: Academic Press, 1970: 6-9.
  • 9Guo L, Chen H F. The self-tuning regulator revisited and ELS based adaptive trackers[J]. IEEE Trans on Automatic Control, 1991, 36(7): 802-812.
  • 10Solo V. Stochastic adaptive control and martingale limit theory[J]. IEEE Trans on Automatic Control, 1991, 35(1): 66-71.

共引文献23

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部