摘要
通过二维Wiener过程的有限加权和形式,利用正态分布的尾概率不等式和Borel-Cantelli引理,对推广的二维Wiener过程的有限加权和在区间[0,T]、长度为aT的子区间的增量有多大问题进行讨论,得出类似于一维Wiener过程的有限加权和增量有多大的结论,该结论可视为一维Wiener过程增量结果的非平凡推广。
The form of weighted sum of two-dimensional Wiener process is proposed in this paper,and discuss how large the increments of it over sub-intervals of length aTof the interval [0,T] by using the tail probability inequality of normal distribution and the Borel-Cantelli lemma. Similar to the conclusion of the increments of one-dimensional Wiener process,this result can be regarded as a non-trivial extension of one-dimensional problem.
作者
牛勇
NIU Yong(Department of Mathematics and Physics,Hefei University,Hefei 230601,China)
出处
《合肥学院学报(综合版)》
2018年第2期1-4,10,共5页
Journal of Hefei University:Comprehensive ED
基金
安徽高校省级自然科学基金一般项目(KJ2013B233)资助
关键词
二维Wiener过程
增量
尾概率不等式
two-dimensional Wiener process
increment
tail probability inequality