期刊文献+

基于BCH和HOG的Mean Shift跟踪算法 被引量:3

Mean Shift tracking algorithm based on BCH and HOG
下载PDF
导出
摘要 为解决基于核的Mean Shift跟踪算法在颜色相近时,容易出现跟踪不准确或者跟踪丢失的问题,同时提高跟踪的可靠性与准确度,分析了近年来的目标跟踪情况,提出一种基于分块颜色直方图(BCH)和方向梯度直方图(HOG)的Mean Shift跟踪算法。其中BCH包含目标的空间信息,能够很好地应对形变;HOG能够很好地解决光照变化和阴影的影响。使用标准数据集进行测试,结果表明:所提算法可以达到高于80帧/s的跟踪速度,分别优于跟踪—学习—检测(TLD)和核相关滤波(KCF)算法1.7%和2.2%。 In order to solve the problem of that kernel-based meanshifl tracking algorithm is prone to occur, tracking inaccurate or tracking loss when the colors are similar, and at the same time, to improve tracking reliability and accuracy, after analyzing on situation of target tracking in recent years, a Mean Shift tracking algorithm based on block color histogram ( BCH ) and direction histogram of gradient (HOG) is proposed. Among them, BCH contains spatial information of the target and can well cope with deformation. HOG can well solve the influence of illumination changes and shadows. Use standard dataset for testing, the results show that the tracking speed can reach above 80 FPS, which is superior to 1.7 % and 2.2 % of TLD and KCF algorithm respectively.
作者 杨康 刘桂华 徐锋 YANG Kang;LIU Gui-hua;XU Feng(School of Information Engineering,Southwest University of Science and Technology,Mianyang 621000,China)
出处 《传感器与微系统》 CSCD 2018年第7期138-141,共4页 Transducer and Microsystem Technologies
基金 国防科工局核能开发科研项目([2016]1295) 四川省教育厅科技项目(16ZB0141) 校创新团队基金资助项目(14tdtk01)
关键词 目标跟踪 分块颜色直方图 方向梯度直方图 Mean SHIFT target tracking block color histogram(BCH) histogram of gradient(HOG) Mean Shift
  • 相关文献

参考文献6

二级参考文献106

  • 1韩晓波.基于背景建模和动态分块的目标跟踪[J].电子技术(上海),2010(10):21-23. 被引量:2
  • 2庄严,战洪斌,王伟,王珂.基于加权颜色直方图和粒子滤波的彩色物体跟踪[J].控制与决策,2006,21(8):868-872. 被引量:20
  • 3孙中森,孙俊喜,宋建中,乔双.一种抗遮挡的运动目标跟踪算法[J].光学精密工程,2007,15(2):267-271. 被引量:30
  • 4马加庆,韩崇昭.一类基于信息融合的粒子滤波跟踪算法[J].光电工程,2007,34(4):22-25. 被引量:15
  • 5张尧庭.多元统计分析引论[M].北京:科学出版社,1999.35-46.
  • 6Nummiaro K, Koller-Meier E, Van Gool L.An adaptive colorbased particle filter[J].Image and Vision Computing, 2003, 21: 99-110.
  • 7Julier S J,Uhlmann J U.Unscented filtering and nonlinear estimation[J].Proceeding of IEEE,2004, 192(3 ) :401-422.
  • 8Jiang Z P.Decentralized disturbance attenuating output-feedback trackers for large-scale nonlinear systems[J].Automatica,2002,38 (5) : 1407-1415.
  • 9Sanjeev Arulampalam M,Maskell S, Gordon N,et al.A tutorial on particle filters for online nonlinear/non-gaussian Bayesian tracking[J].IEEE Transactions on Signal Processing,2002,50(2): 174-188.
  • 10Dalai N, Triggs B.Histograms of oriented gradients for human detection[C]//Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2005.

共引文献249

同被引文献18

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部