期刊文献+

随机障碍下动态基金保护的定价 被引量:3

Pricing dynamic fund protections under a stochastic boundary
下载PDF
导出
摘要 在标的基金价格和随机障碍含有共同跳的假设下,考虑了动态基金保护的定价问题。利用Girsanov定理和首中时分布的拉普拉斯变换,给出了动态基金保护价格的拉普拉斯变换的显示表达公式。 This paper studies the valuation of dynamic guaranteed fund protections under the assumption that the price of underlying naked fund and the stochastic boundary have common shocks. Based on the Laplace transform of the first passage time and Girsanov theorem,we have obtained the closed-form expression for the Laplace transform of the price of dynamic fund protection.
作者 许超 董迎辉 XU Chao;DONG Yinghui(School of Mathematics and Physics,SUST,Suzhou 215009,China)
出处 《苏州科技大学学报(自然科学版)》 CAS 2018年第2期21-25,共5页 Journal of Suzhou University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(11771320) 江苏省自然科学基金资助项目(BK20140279) 青蓝工程资助项目 江苏省研究生科研与实践创新计划项目(KYCX17-2059)
关键词 动态基金保护 随机障碍 共同跳 超指数跳扩散模型 拉普拉斯变换 dynamic fund protection stochastic boundary common shocks hyper -exponential jump -diffusion model Laplace transform
  • 相关文献

参考文献2

二级参考文献20

  • 1L J Bo, R M Song, D Tang, Y J Wang, X W Yang. Ldvy risk model with two-sided jumps and a barrier dividend strategy, Insurance Math Econom, 2012, 50: 280-291.
  • 2N Cai,S G Kou. Option pricing under a mixed-exponential jump diffusion model, Manage Sci, 2011, 57: 2067-2081.
  • 3B De Finetti. Su unimpostazione alternativa dell teoria collettiva del rischio, Transactions of the XVth International Congress of Actuaries, 1957, 2: 433-443.
  • 4HU Gerber. An extension of the renewal equation and its application in the collective theory of risk, Skandinavisk Aktuarietidskrift, 1970, 205-210.
  • 5H U Gerber, B Landry. On the discounted penalty at ruin in a jump-diffusion and the perpetual put option, Insurance Math Econom, 1998, 22: 263-276.
  • 6HUGerber ESWShiu. On the time value of ruin, N Am Actuar J, 1998, 2: 48-72.
  • 7S G Kou, H Wang. First passage times of a jump diffusion process, Adv in Appl Probab, 2003, 35: 427-445.
  • 8C Labb6a, H S Sendov, K P Sendova. The Gerber-Shiu function and the generalized Cramdr- Lundberg model, Appl Math Comput, 2011, 218: 3035-3056.
  • 9M RPistorius. On exit and ergodicity of the spectraUy one-sided Ldvy process reflected at its infimum, J Theoret Probab, 2004, 17: 183-220.
  • 10KCYuen, CCYin. On optimality of the barrier strategy for a general Ldvy risk process, Math Comput Modelling, 2011 53: 1700-1707.

共引文献6

同被引文献9

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部