摘要
建立具有潜伏期和非线性免疫反应的HTLV-I传染模型,研究模型的动力学性态,得到病毒感染再生数R_0和CTL免疫再生数R_1.通过构造Lyapunov函数证明:当R_0≤1时无病平衡点P_0是全局渐近稳定的;当R_0>1且R_1≤1时,无免疫平衡点P_1是全局渐近稳定的;当R_1>1时,正平衡点P_2是全局渐近稳定的.
A HTLV-I infection model with latency and non-linear immunity is established,and the dynamics of the model is studied.The basic reproduction number of virus infection and the basic reproduction number of CTL immune are obtained.By constructing the Lyapunov function,it is proved that infection-free equilibrium P0 is globally asymptotically stable if R0≤1;equilibrium without CTL response P1 is globally asymptotically stable if R0〉1 and R1≤1;positive equilibrium P2 is globally asymptotically stable if R1〉1.
作者
高亚男
胡新利
杨高艳
GAO Yanan;HU Xinli;YANG Gaoyan(School of Science,Xi'an Polytechnic University,Xi'an 710018,China)
出处
《西安工程大学学报》
CAS
2018年第3期362-369,共8页
Journal of Xi’an Polytechnic University
基金
陕西省教育厅自然科学专项基金(15JK1295)
陕西省自然科学基础研究计划(2016JQ1029)