期刊文献+

面向网络入侵检测系统的深度卷积神经网络模型 被引量:8

Deep convolutional neural network model for network intrusion detection system
下载PDF
导出
摘要 鉴于卷积神经网络(CNN)在计算机视觉等诸多领域取得的巨大成就,提出一种将卷积神经网络应用到网络入侵检测(IDS)领域的方法,以达到网络攻击行为的高准确度识别的目的 .该方法将IDS中的网络数据转化成卷积神经网络能够输入的数据,利用卷积神经网络对大量高维无标签原始数据进行特征降维,再采用BP神经网络反向微调结构参数,从而获得原始数据的最优低维表示.实验中,用Softmax分类器进行网络攻击行为识别,采用KDD CUP99数据集进行实验测试,证明该方法分类效果优于传统机器学习方法,在保证精度的同时,较其方法,该方法误检率平均降低0.5%,是一种可行且高效的方法,为网络入侵检测系统领域提供一种全新的思路. In view of the tremendous achievements made by the convolutional neural network( CNN) in many fields,such as computer vision,etc.,a method of applying convolution neural network to the domain of network intrusion detection system( IDS) was proposed in order to achieve the purpose of high-precision identification of network attack. Firstly,the network data in IDS was transformed into the data that can be input by convolution neural network. Secondly,the convolution neural network was used to reduce the dimensionality of a large number of non-tagged original data,and the optimal low-dimensional representation of the original data was obtained. Finally,Softmax classifier was adopt for the recognition of the network attack behavior. This method aimed at the problem of traditional CNN network structure to improve CNN. KDD CUP99 data set was used to carry out the experimental test. It is proved that the classification effect of this method is better than that of the traditional machine learning method. Comparing the results by two methods under the guaranteed accuracy,the error detection rate of the improved CNN method was reduced by 0. 5 percent on average,demostrating that this method is feasible and efficient,which may provide a new way of thinking for network intrusion detection system.
作者 刘月峰 王成 张亚斌 苑江浩 LIU Yue-feng;WANG Cheng;ZHANG Ya-bin;YUAN Jiang-hao(Information Engineering School,Inner Mongolia University of Science and Technology,Baotou 014010,China;National Bureau ofGrain Science Academy,Beijing 100037,China)
出处 《内蒙古科技大学学报》 CAS 2018年第1期59-64,共6页 Journal of Inner Mongolia University of Science and Technology
关键词 网络入侵检测 深度学习 卷积神经网络 梯度下降 intrusion detection deep learning convolutional neural network gradient decline
  • 相关文献

参考文献7

二级参考文献74

  • 1张相锋,孙玉芳,赵庆松.基于系统调用子集的入侵检测[J].电子学报,2004,32(8):1338-1341. 被引量:10
  • 2姚羽,高福祥,于戈.基于混沌神经元的延时滥用入侵检测模型[J].电子学报,2004,32(8):1370-1373. 被引量:4
  • 3王丽娜,徐巍,刘铸.基于相似度聚类分析方法的异常入侵检测系统的模型及实现[J].小型微型计算机系统,2004,25(7):1333-1336. 被引量:16
  • 4钱德沛,张然,白跃彬.一种基于UML的协同入侵检测系统分析方法[J].北京航空航天大学学报,2004,30(9):803-807. 被引量:2
  • 5V Vapnik.The Nature of Statistical Learning Theory[M].New York:Springer Verlag,1955.
  • 6B Scholkopf,et al.Input Space Versus Feature Space in Kernel-based Methods[J].IEEE Trans Neural Networks,1999,10(5):1000-1017.
  • 7B Scholkopf,A J Smola,K R Muller.Nonlinear Component Analysis as a Kernel Eigenvalue Problem[J].Neural Computation.1998,(10):1299-1319.
  • 8L J Cao,K S Chua,W K Chong.A Comparision of PCA,KPCA and ICA for Dimensionality Reduction in Support Vector machine[J].Neurocomputing,2003,55(2):321-336.
  • 9Tsang Chi-ho,Kwong Sam,and Wang Han-li.Genetic-fuzzy rule mining approach and evaluation of feature selection techniques for anomaly intrusion detection[J].Pattern Recognition,2007,40(9):2373-2391.
  • 10Helmer G,Wong J S K,and Honavar V,et al..Automated discovery of concise predictive rules for intrusion detection[J].Journal of Systems and Software,2002,60(3):165-175.

共引文献692

同被引文献43

引证文献8

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部