摘要
为降低云对MODIS逐日积雪覆盖产品MOD10A1和MYD10A1在新疆积雪实时监测与研究中的影响,引入交互式多传感器雪冰制图系统(interactive multi-sensor snow ice mapping system,IMS)等多源遥感数据和地面实测资料,综合时间滤波法、空间滤波法及多传感器融合法等不同的去云技术,建立基于多源数据的去云方法,生成新疆地区2002—2016年近15 a间逐日无云积雪覆盖产品数据,并利用实测资料对生成的产品数据进行精度评价及结果验证。结果表明,去云后积雪覆盖产品在新疆积雪覆盖的总体监测精度为90.61%,接近于去云前MODIS晴空积雪覆盖产品在新疆的总体监测精度(93.3%)。
MODIS snow product data constitute one of the most common data in the real-time monitoring and the research on snow cover; nevertheless,the cloud is the biggest factor affecting the application of MODIS snow cover products( MOD10 A1 and MYD10 A1) to real-time monitoring and researching daily snow cover in Xinjiang region. By introducing such data as the interactive multi-sensor snow ice mapping system( IMS) data and the meteorological station observation data and combining the existent cloud removal methods based on temporal filter method,spatial filter method and multi-sensor data fusion method,the authors established a new cloud removal method based on multi-source remote sensing data,with which the 15-year-long daily snow cover product in clear air of the study area from 2002 to 2016 was generated. In addition,the accuracy of the cloud removed product was evaluated with field experiment data. The results show that the overall monitoring accuracy of the new product after cloud removal reaches 90. 61% in the study area,which is close to the overall monitoring accuracy( 93. 3%)of the MODIS clear air snow cover product before cloud removal in the study area.
作者
侯小刚
郑照军
李帅
陈雪华
崔宇
HOU Xiaogang;ZHENG Zhaojun;LI Shuai;CHEN Xuehua;CUI Yu(Institute of Network Technology,Beijing University of Posts and Telecommunications,Beijing 100876,China;National Satellite Meteorological Center,China Meteorological Administration,Beijing 100081,China;Insitute of Desert Meteorology,China Meteorological Administration,Urumqi 830002,China;Xinjiang Academy of Surveying and Mapping,Urumqi 830002,China)
出处
《国土资源遥感》
CSCD
北大核心
2018年第2期214-222,共9页
Remote Sensing for Land & Resources
基金
国家自然科学基金项目"基于遥感的沙尘对东帕米尔高原典型冰川规模影响机理研究"(编号:41505077)和"多源遥感数据支持的无资料地区积雪模型参数化研究"(编号:41471358)共同资助
关键词
逐日无云积雪产品
多源遥感数据
去云方法
新疆
daily cloudless snow product
multi -source remote sensing data
cloud removal method
Xinjiang