期刊文献+

一种基于核回归插值的自适应非均匀性校正算法 被引量:1

An Adaptive Non-uniformity Correction Algorithm Based on Kernel Regression Interpolation
下载PDF
导出
摘要 针对基于神经网络的场景自适应非均匀性校正(Non-Uniformity Correction,NUC)算法在消除红外成像系统输出图像噪声时容易产生的"鬼影"现象,提出了一种改进的自适应非均匀性校正算法,将核回归插值技术应用到神经网络算法中,有效降低了自适应非均匀性算法产生"鬼影"现象的概率。实验结果表明,与传统的神经网络算法相比,本文算法在相同条件下既能有效消除非均匀噪声,又能大大抑制"鬼影"现象的产生。 Since the scene adaptive nonuniformity correction(NUC)algorithm based on neural network is easy to generate the phenomenon of "ghost" when it removes the noise in the images output by infrared imaging systems,an improved adaptive nonuniformity correction algorithm is proposed.By applying kernel regression interpolation to the neural network algorithm,the probability of "ghost" phenomenon caused by the adaptive nonuniformity algorithm is reduced effectively.The experimental results show that compared with the traditional neural network algorithm,the proposed algorithm not only can eliminate nonuniformity noise effectively,but also can restrain the generation of "ghost" phenomenon greatly under the same conditions.
作者 刘明忠 孟军 王雨蒙 李东涛 郭然 LIU Ming-zhong;MENG Jun;WANG Yu-meng;LI Dong-tao;GUO Ran(Luoyang Electronic Equipment Test Center of China,Jiyuan 454650,Chin)
出处 《红外》 CAS 2018年第7期29-34,共6页 Infrared
关键词 红外探测器 非均匀性校正 神经网络 核回归 边缘保护 infrared detector non-unifomlity correction neural network kernel regression edge-preserving
  • 相关文献

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部