期刊文献+

广义预测控制算法改进及其性能仿真研究

Simulation Study on the Performance andImprovement of Generalized Predictive ControlAlgorithm
下载PDF
导出
摘要 基于“预测、滚动优化、反馈校正”思想的广义预测控制算法,现己成为一种重要的先进控制策略,并被广泛应用于复杂工业过程控制中.广义预测控制算法可分为显式算法和隐式算法两种,在隐式算法的基础上,为了抑制输出的剧烈振荡,提出了在广义预测控制目标函数中加入输出增量项,为了消弱测量误差、干扰及饱和等因素的影响,采用有平滑滤波作用的输入加权控制增量,并推导了改进算法的控制律.仿真结果表明,改进后的广义预测控制算法无论在跟踪性能、控制精度及鲁棒性上,均优于常规广义预测控制. The Generalized Predictive Control (GPC) , which based on the thought of "prediction, receding horizon optimization, feedbackcorrection", now has become an important advanced control strategy, and has been widely used in complex industrial processcontrol. Generalized predictive control algorithm can be divided into explicit algorithm and implicit algorithm. Based on theimplicit algorithm, the method of the output increase item joined in the objective function of GPC is proposed to suppress theacutely vibration of the output, and in order to weaken the measurement error, interference and saturation and other factors, theweighted input control increment with smoothing filter function is adopted, the improvement algorithm control law is given, andthe effect of the improvement algorithm control has been confirmed. Simulation results show that the improved algorithm is betterthan the GPC in track capacity and control precision, and it also puts a check on the disturbance in some sense.
作者 马长林 郝琳 Ma Chang-lin;Hao Lin(Xi’an Research Inst.Of Hi-tech Hongqing Town,Xi’an,Shanxi Province,Chin)
出处 《控制工程期刊(中英文版)》 2016年第1期15-20,共6页 Scientific Journal of Control Engineering
关键词 广义预测控制 隐式算法 目标函数 Generalized predictive control Implicit algorithm Objective function
  • 相关文献

参考文献4

二级参考文献16

  • 1王伟.广义预测自适应控制的直接算法及全局收敛性分析[J].自动化学报,1995,21(1):57-62. 被引量:23
  • 2袁著祉.递推广义预测自校正控制器[J].自动化学报,1989,15(4):348-351. 被引量:37
  • 3熊淑燕,太原工业大学学报,1992年,23卷,2期
  • 4袁著祉,自动化学报,1989年,15卷,4期
  • 5Clarke D W, Mohtadi C. Properties of generalized predictive control[J]. Automatica, 1989,25(6): 859-875.
  • 6Li J, Xu X, Xi Y. Artificial neural networks-based predictive control[C].IECON'91, 1991 International Conference On, Industrial Electronics, Control and Instrumentation, 1991.
  • 7Bhat N, McAvoy T. Use of neural nets for dynamic modelling and control of chemical process systems[J].Computers Chem. Engng, 1990,14(4):573-583.
  • 8Norgaard M, Sorensen P H, Poulsen N K, et al. Intelligent predictive control of nonlinear processes using neural networks[C]. Intelligent Control, Proceedings of the 1996 IEEE International Symposium, 1996-09: 301-306.
  • 9MartinHagan HouardBDemnth MarkHBeale.神经网络设计[M].北京:机械工业出版社,2002..
  • 10Clarke D W, Scattolini R. Constrained receding-horizon predictive control[J]. IEE Proc PartD, 1991,138:347 - 354.

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部