摘要
借助Map-reduce平台对旅客订票日志进行挖掘,并采用LDA算法挖掘旅客出行意图,进而计算航线的潜在价值。在2011年中航信民航旅客订票日志上的实验结果表明:采用LDA算法挖掘的航线与实际热门航线的Jacarrd相似系数达92%,比基于航班次数统计的传统方法高出2%,能够更准确、更有效地预测航线的未来价值。
This paper used the map-reduce platform to mine the passenger booking logs,used the LDA algorithm to mine passenger's travel intentions,and then calculated the potential value of the airline.The experimental results on the passenger name records in 2011 indicate that the similarity(Jacarrd Index) between the airlines excavated and the actual hot airlines is up to 92%,which is 2% higher than the conventional method based on the number of flights.It can predict the future value of the airline more accurately and effectively.
作者
卢敏
李照宇
刘康超
李纯
LU Ming;LI Zhaoyu;LIU Kangchao;LI Chun(Civil Aviation University of China,Tianjin 300300,Chin)
出处
《铁路计算机应用》
2018年第7期109-114,共6页
Railway Computer Application
基金
国家自然科学基金项目(61502499)
大学生创新创业训练计划项目(201710059047)
中国民航大学科研基金(2013QD18X)
中山大学机器智能与先进计算教育部重点实验室开放课题(MSC-201704A)
中央高校基本科研业务费科研专项(3122013C005)