期刊文献+

涉及双变量Hermite多项式的新二项式定理及应用 被引量:3

New Generalized Binomial Theorems Involving Two-variable Hermite Polynomials Via Quantum Optics Approach and Their Applications
下载PDF
导出
摘要 利用量子光学方法,将普通的二项式定理推广到涉及双变量Hermite多项式情况,解析推导出几个新的广义二项式定理及其推论.作为应用,解析证明多光子扣除压缩态a^mb^ne^(sa+b++ra++tb+)|00〉等价于实验上易于调控的非高斯纠缠信息源,即以双变量Hermite多项式为权重的非高斯量子态;而且发现自旋相干态的Wigner函数恰好正比于Laguerre多项式. We extend the ordinary binomial theorem to the case which involves two-variable Hermite polynomials Hl,k(x,y)in the context of quantum optics,and analytically obtain several new generalized binomial theorems and their corollaries.As their applications,we analytically prove that the multiple-photon-subtracted squeezed state a^mb^ne^(sa+b++ra++tb+)|00〉 is equivalent to the Hermite-polynomialweighted quantum state serving as an easily controlled non-Gaussian entangled information resource,and the Wigner functions of the spin coherent states are respectively the Laguerre polynomials.
作者 孟祥国 MENG Xiang -guo(School of Physical Science and Information Engineerig,Shandong Provincial Key Laboratory of Optical Communication Science and Technology,Liaocheng University,Liaocheng 252059,Chin)
出处 《聊城大学学报(自然科学版)》 2018年第2期66-71,86,共7页 Journal of Liaocheng University:Natural Science Edition
基金 国家自然科学基金资助项目(11347026) 山东省自然科学基金(ZR2016AM03、ZR2017MA011)
关键词 新二项式定理 纠缠态表象 有序算符内积分法 WIGNER函数 new binomial theorem entangled state representation the method of integration withinordered product of operators Wigner function
  • 相关文献

参考文献4

二级参考文献15

  • 1喀兴林.高等量子力学[M].北京:高等教育出版社,2001.308-326.
  • 2Kitagama M, Ueda M. Squeezed spin states[J]. Phys Rev A, 1993, 47(6): 5 138-5 243.
  • 3Duan L M, Sprensen A, Cirae I J, et al. Squeezing and entanglement of atomic beams [J]. Phys Rev Lett, 2000, 85(19) : 3 991-3 994.
  • 4Khodorkovsky Y, Kurizki G, Vardi A. Deeohenrenee and entanglement in bosonic Josephson junction: Bose-enhanced quantum Zeno control of phase diffusion [J]. Phys Rev A, 2009, 80(2) : 023609/1-12.
  • 5Penrose O, Onsager L. Bose-Einstein condensation and liquid helium [J]. Phys Rev, 1956, 104(3): 576-584.
  • 6Saffman M, Oblak D, Appel J and Polzik E S. Spin squeezing of atomic ensembles by multicolor quantum nondemolition measurements [J]. Phys Rev A, 2000, 79(2) : 023831/1-8.
  • 7Markin Y, Scho n G and Shnirman A. Quantum-state engineering with Josephson-junction devices [J]. Rev Mod Phys, 2001, 73(2) : 357-400.
  • 8Milburn G J, Corney J, Wright E M, et al. Quantum dynamics of an atomic Bose-Einstein condensate in a double-well potential [J]. Phys Rev A, 1997, 55(6): 4 318-4 324.
  • 9Law C K, Ng H T, Leung P T. Coherent control of spin squeezing[J]. Phys Rev A, 2001, 63(5) : 055601/1-3.
  • 10Ferrini G, Spehner D, Minguzzi A, et al. Noise in Bose Josephson junctions: Decoherence and phase relaxation [J]. Phys Rev A 2010, 82(3): 033621/1-5.

共引文献2

同被引文献5

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部