摘要
利用量子光学方法,将普通的二项式定理推广到涉及双变量Hermite多项式情况,解析推导出几个新的广义二项式定理及其推论.作为应用,解析证明多光子扣除压缩态a^mb^ne^(sa+b++ra++tb+)|00〉等价于实验上易于调控的非高斯纠缠信息源,即以双变量Hermite多项式为权重的非高斯量子态;而且发现自旋相干态的Wigner函数恰好正比于Laguerre多项式.
We extend the ordinary binomial theorem to the case which involves two-variable Hermite polynomials Hl,k(x,y)in the context of quantum optics,and analytically obtain several new generalized binomial theorems and their corollaries.As their applications,we analytically prove that the multiple-photon-subtracted squeezed state a^mb^ne^(sa+b++ra++tb+)|00〉 is equivalent to the Hermite-polynomialweighted quantum state serving as an easily controlled non-Gaussian entangled information resource,and the Wigner functions of the spin coherent states are respectively the Laguerre polynomials.
作者
孟祥国
MENG Xiang -guo(School of Physical Science and Information Engineerig,Shandong Provincial Key Laboratory of Optical Communication Science and Technology,Liaocheng University,Liaocheng 252059,Chin)
出处
《聊城大学学报(自然科学版)》
2018年第2期66-71,86,共7页
Journal of Liaocheng University:Natural Science Edition
基金
国家自然科学基金资助项目(11347026)
山东省自然科学基金(ZR2016AM03、ZR2017MA011)
关键词
新二项式定理
纠缠态表象
有序算符内积分法
WIGNER函数
new binomial theorem
entangled state representation
the method of integration withinordered product of operators
Wigner function