期刊文献+

低信噪比下的语音端点检测算法研究 被引量:5

The Research of Voice Endpoint Detection Algorithm Under Low SNR
下载PDF
导出
摘要 为了解决传统方法在强噪声环境下,语音检测性能急剧下降的缺陷,提高信号在低信噪比(0 db以下)语音端点检测的准确性,本文提出了一种将多窗谱估计谱减法和自适应子带能熵比相结合的检测算法。该算法利用增益因子可变的多窗谱估计谱减法对低信噪比信号进行降噪,提高其信号的信噪比,再将每帧信号分为若干个子带(其数量可自适应选择),提取每个子带能熵比参数进行端点检测。实验结果表明,当信噪比为-10 db时,信号检测准确性维持在95%左右。该方法能在低信噪比情况下,显著提高端点检测准确性和可靠性。 Under the strong noise condition, the voice detection performance decrease dramatically by traditional way. In order to improve the voiee deteetion aeeuracy for the poor signal - to - noise ratio (lower than 0 db) under the strong noise circumstance, this article introduces a new method which is based on spectral subtraction of mlutitaper spectral estimation and adaptive sub - band energy - entropy - ratio. This algorithm is using gain taetor of variable multitaper spectral estimation to denoise the poor signal and improve the signal - to - noise ratio, then divide the signal frame into several sub - bands whose quantity is adaptive choosing. Abstract the data from the sub - band energy - entropy - ratio to detect the endpoint. The experiment result shows that the signal detection accuracy is around 95% when the SNR of voice signal is lower than 0 db. The method of this paper improves accuracy and rcliability of lhc endpoint detection under lhc lower SNR circumstance.
作者 陈莹莹 毕春艳 龙建忠 CHEN Yingying;BI Chunyan;LONG Jianzhong(School of Electrical and Electronic Information Engineering,Jinjiang College,Sichuan University,Pengshan 620860,China;School of Electronics and Information Engineering,Sichuan University,Chengdu 610065,China)
出处 《电视技术》 2018年第6期9-12,27,共5页 Video Engineering
基金 四川省教育厅科研项目(17ZB0261)
关键词 低信噪比 多窗谱 谱减法 子带能熵比 自适应算法 端点检测 Low signal - to - noise ratio muhitaper method spectral subtraction sub - band energy- entropy - ratio adaptive algorithm endpoint detection
  • 相关文献

参考文献4

二级参考文献36

  • 1柏静,韦岗.一种基于线性预测与自相关函数法的语音基音周期检测新算法[J].电声技术,2005,29(8):43-46. 被引量:14
  • 2江官星,王建英.一种改进的检测语音端点的方法[J].微计算机信息,2006,22(05S):138-139. 被引量:27
  • 3叶裕雷,戴文战.一种基于新阈值函数的小波信号去噪方法[J].计算机应用,2006,26(7):1617-1619. 被引量:47
  • 4Quatieri T F.离散时间语音信号处理-原理与应用[M].赵胜辉,译.北京:电子工业出版社,2004:504-512.
  • 5Lamel L,Labiner L,Rosenberg A,et al.An improved endpoint detect for isolated word recognition[J].IEEE ASSP,1981,29(4):777-785.
  • 6Junqua J C,Mak B,Revaes B.A robust algorithm for word boundary detection in the presence of noise[J].IEEE Trans Speech Audio Processing,1994,2 (4):406-412.
  • 7Shen J L,Hung J W,Lee L S.Robust entropy-based endpoint detection for speech recognition in noisy environments[J].ICSLP,1998,7(6):400-405.
  • 8Wu G D,Lin C T.Word boundary detection with mel-scale frequency bank in noise environment[J].IEEE Trans Speech Audio Processing,2000,8 (3):541-554.
  • 9Wu B F,Wang K C.Robust endpoint detection algorithm based on the adaptive band-partitioning spectral entropy in adverse environments[J].IEEE Trans Speech Audio Processing,2005,13 (5):762-774.
  • 10DONOHO D L,JOHNSTONE J M.Ideal spatial adaptation by wavelet shrinkage[J].Biometrika,1994,81(3):425-455.

共引文献39

同被引文献40

引证文献5

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部