期刊文献+

局部轨迹信息的联机手写维吾尔文单词过切分

On-line handwriting Uyghur words over-segmentation of local trajectory information
下载PDF
导出
摘要 将手写单词分割成字符是一项艰巨的任务。本文提出一种基于局部轨迹信息的单词过切分方法。该方法中,在不预先对附加笔划进行分组,不确定基线位置和不做倾斜校正的情况下探索单词轨迹的局部信息进行过切分。利用的局部信息包括手写轨迹中的平直点、局部最大和最小、局部最右和最左。探索手写单词原轨迹点序列中的局部最大值和局部最小值的点,从中找出切分点。初步确定的切分块里找到最右边和最左边的点更新切分点。本文提出的方法在5个不同作者的500个无约束手写单词样本上进行测试。平均字符切分召回率和正确率分别为93.35%和69.97%。 Segmenting the handwritten word into characters is a tough mission for alphabetic scripts. This paper proposes an effective character over - segmentation method for online handwritten Uyghur words. This method tries to find segmentation points without pre - grouping of delay - strokes, determining baseline position and skew correction. The informative points including horizontal fiat, local pcak and valley, local rightmost and lefimost points for making pre -step over-segments. The local ma:dma and minima points are explored to find the segment points from the handwritten trajectory. The pre - determined segmentation points are modified by the rigbtmost and leftmost points within the pre - segmented fractions. The proposed method is tested on 500 unconstrained handwritten word samples from 5 diffm^nt writers. The average character segmentation recall rate and correct are observed as about 93.35% and 69.97%.
作者 玛伊莱.艾力 吾加合买提.司马义 玛依拉.依布拉音 艾斯卡尔.艾木都拉 MAYIRA·ALI;WUJIAHEMAITI·SIMAYI;MAYIRE·IBRAYIM;ASKAR·HAMDULLA(Institute of Information Science and Engineering,Xinjiang University,Urumqi 830046,Chin)
出处 《电视技术》 2018年第6期32-35,共4页 Video Engineering
基金 国家自然科学基金地区项目(61462081)的支持
关键词 联机手写识别 过切分 维吾尔文单词 局部最大值和局部最小值 Online handwritten recognition over - segmentation Uyghur words local - maxima and minima
  • 相关文献

参考文献2

二级参考文献23

  • 1哈力木拉提,阿孜古丽.多字体印刷维吾尔文字符识别系统的研究与开发[J].计算机学报,2004,27(11):1480-1484. 被引量:36
  • 2Nicholas W,Strthy Amdg,A method for segmentation of touching handwritten numerals [D].Master Thesis , Montreal, Quebec,Canada;Concordia University ,1993.
  • 3Chen Yikai,Wang Jhingfa.Segmentation Of single-or multipletouching handwritten numeral string using background and foreground analysis[J].IEEE Trans PAMI,2000,22 (11): 1304-1317.
  • 4季秀霞.AdaBoost算法在车牌字符识别中的应用[J].微计算机信息,2007,23(22):262-264. 被引量:6
  • 5章毓晋.图像分割[M].北京:科学出版社,2001..
  • 6Plamondon R, Srihari S N. On-line and off-line handwrit- ing recognition: a comprehensive survey. IEEE Trans Pattern Analysis and Machine Intelligence, 2000, 22 ( 1 ) : 63 -85.
  • 7Jaeger S, Manke S, Reichert J, et al. Online hand-writ- ing recognition: The NPen + + recognizer. International Journal on Document Analysis and Recognition, 2001, 3 (3) : 169-180.
  • 8Khorsheed M S. Off-line Arabic character recognition: a review. Pattern Analysis and Applications, 2002, 5 ( 1 ) : 31-45.
  • 9Liu C L, Koga M, Fujisawa H. Lexicon-driven segmenta- tion and recognition of handwritten character strings for Japanese address reading. IEEE Trans Pattern Analysis and Machine lnteUigence, 2002, 24( 11 ) : 1425-1437.
  • 10Wang Q F, Yin F, Liu C L. Handwritten Chinese textrecognition by integrating multiple contexts. IEEE Trans Pattern Analysis and Machine Intelligence, 2012, 34 ( 8 ) : 1469-181.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部