摘要
针对稀疏求解算法在稀疏度估计上的优势和增加固定步长的不足,提出改进的自适应正交匹配追踪算法。该算法引入稀疏度和变步长步骤,首先通过匹配测试来估计稀疏度初始值,以减少后续迭代次数,然后在不同阶段调整步长来筛选原子数,逼近真实稀疏度。实验结果表明,与其他贪婪算法相比,该算法有效提高了识别精度和效率。
A modified adaptive orthogonal matching pursuit(MAOMP)algorithm was proposed to guarantee advantages in sparsity estimation and overcome the disadvantages of increasing fixed step values in sparse solution.The algorithm introduced sparsity and variable step sizes.Initial value of sparsity was estimated by matching tests,and the numbers of subsequent iterations were decreased. Finally,the step sizes were adjusted to select atoms and approximate the true sparsity at different stages.Experimental results show that compared with other greedy algorithms,the proposed algorithm improves the recognition accuracy and efficiency.
作者
李贝
孙瑛
李公法
蒋国璋
孔建益
江都
陈迪斯
LI Bei;SUN Ying;LI Gongfa;JIANG Guozhang;KONG Jianyi;JIANG Du;CHEN Disi(Key Laboratory of Metallurgical Equipment and Control Technology of Ministry of Education,Wuhan University of Science and Technology,Wuhan,430081;Research Center for Biomimetic Robot and Intelligent Measurement and Control,Wuhan University of Science and Technology,Wuhan,430081;Institute of Precision Manufacturing,Wuhan University of Science and Technology,Wuhan,430081;Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering,Wuhan University of Science and Technology,Wuhan,430081;The Research Institute of 3D Printing and Intelligent Manufacturing Engineering,Wuhan University of Science and Technology,Wuhan,430081)
出处
《中国机械工程》
EI
CAS
CSCD
北大核心
2018年第14期1736-1742,共7页
China Mechanical Engineering
基金
国家自然科学基金资助项目(51575407,51575338,51575412,61273106)
关键词
手势识别
匹配算法
贪婪算法
稀疏数据
步长值
gesture recognition
matching algorithm
greedy algorithm
sparse data
step value