期刊文献+

LBM-DEM四向耦合喷动床内介尺度模拟与分析 被引量:4

Mesoscale simulation and analysis of spouted bed with LBM-DEM four direction coupling
下载PDF
导出
摘要 研究喷动床内颗粒的流动特性对于喷动床的设计和优化具有重要意义。基于气固两相流流动的LBMDEM四向耦合模型,对单孔射流喷动床中颗粒的流动进行数值模拟。其中,气相采用修正的格子玻尔兹曼方法,颗粒相采用离散单元法,流固之间受力的双向耦合基于牛顿第三定律,颗粒与颗粒及颗粒与壁面的受力双向耦合采用软球模型。模拟得到了流化过程、颗粒与气体的速度分布、床层膨胀高度变化以及床宽对流化过程的影响。结果表明,喷动床内存在强烈的内循环,床宽增加导致颗粒运动能力减弱,射流速度增加使颗粒运动更加剧烈,床层膨胀高度增加。 It is important for the design and optimization of the spouted bed for its design and optimization.This paper developed the LBM-DEM four-directional coupling model based on the gas-solid two-phase flow.And it simulates the flow characteristics of particles in a single-hole jet-spouted bed.The gas phase is dealt with by the modified lattice Boltzmann method and the particle phase by the discrete element method.The bi-directional coupling between fluid phase and solid phase follows the Newton's third law.Forces among particles,and between particles and wall are realized by the soft sphere model.The effect of the fluidization process,the velocity distribution of particles and gas,the height change of the bed and the convection process of bed width are abtained.The results show that there is a strong internal circulation in the spouted bed.The increasement of bed width results in the decrease of particles' movement ability.The increase of jet velocity makes particles move more violently and the bed expansion height increase.
作者 李斌 张尚彬 滕昭钰 边禹铭 张健 巴星原 LI Bin;ZHANG Shang-bin;TENG Zhao-yu;BIAN Yu-ruing;ZHANG Jian;BA Xing-yuan(Department of Power Engineering,North China Electric Power University,Baoding 071003,China)
出处 《计算力学学报》 EI CAS CSCD 北大核心 2018年第4期527-532,共6页 Chinese Journal of Computational Mechanics
关键词 喷动床 四向耦合 格子玻尔兹曼方法 离散单元法 数值模拟 spouted bed four directional coupling lattice Boltzmann method discrete element method numerical simulation
  • 相关文献

参考文献5

二级参考文献84

  • 1陈胜,施保昌,柳朝晖,贺铸,郭照立,郑楚光.Lattice-Boltzmann simulation of particle-laden flow over a backward-facing step[J].Chinese Physics B,2004,13(10):1657-1664. 被引量:8
  • 2Leboreiro J, Joseph G G, Hrynya C M. Revisiting the Standard Drag Law for Bubbling Gas-Fluidized Beds. Powder Technology, 2008, 183 (3): 358-400.
  • 3Gerlach D, Alleborn N, Buvra V, et al. Numerical Simulation of Periodic Bubble Formation at a Submerged Orifice with Constant Gas Flow Rate. Chemical Engineering Science, 2007, 62 (4): 2109-2125.
  • 4Gidaspow D. Multiphase Flow and Fluidization. San Diego: Academic Press, 1994.
  • 5Deen N G, van Sint Annaland M, van der Hoef M A, et al. Review of Discrete Particle Modeling of Fluidized Beds. Chemical Engineering Science, 2007, 62 (1-2): 28-44.
  • 6Ge W, Li J H. Macro-Scale Phenomena Reproduced in Microscopic Systems-Pseudo-Particle Modeling of Fluidization. Chemical Engineering Science, 2003, 58 (8): 1565-1585.
  • 7Nieuwland J J, Kuipers J A M, van Swaaij W. Hydrodynamic Modeling of Gas/Particle Flows in Riser Reactors. AIChE Journal, 1996, 42 (6): 1569-1583.
  • 8Samuelsberg A, Hjertager B. An Experimental and Numerical Study of Flow Patterns in a Circulating Fluidized Bed Reactor. International Journal of Multiphase Flow, 1996, 22 (3) : 575-591.
  • 9van Wachem B G M, Schouten J C, van den Bleek C M. Comparative Analysis of CFD Models of Dense Gas-Solid Systems. AIChE Journal, 2001, 47 (5): 1035-1051.
  • 10Wang W, Li J H. Simulation of Gas-Solid Two-Phase Flow by a Multi-Scale CFD Approach-Extension of the EMMS Model to the Sub-Grid Level. Chemical Engineering Science, 2007, 62 (1-2): 208-231.

共引文献41

同被引文献20

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部