期刊文献+

重卷机组张力神经网络控制器的可视化构建 被引量:1

Visualization building of neural network controller for recoiling tension control system
下载PDF
导出
摘要 针对重卷机组中张力控制系统存在参数时变、非线性等问题,引起张力控制模型仿真的复杂性,为简化实际应用中神经网络控制器构建的复杂性,本文结合Matlab、VC++工具建立了一种可视化调节界面用以获得神经网络控制器。通过实际输出曲线同期望轨迹的误差对控制输入进行可视化调节,利用学习控制对控制输入做更进一步的优化,进而训练得到期望的神经网络控制器。为克服单纯采用神经网络控制造成的稳态误差,设计了切换策略用以实现不同偏差作用下神经网络控制器同PI控制器之间的切换。通过仿真验证了该方法的有效性。 The problems of parameter time-variable and nonlinear exist in the tension control system of recoiling unit,which makes the tension control model simulation complicated. To simplify building neural network controller in real application,a visual adjustment interface is set up to the NN controller based on Matlab and VC ++. Through the error between actual output curves and expected trajectory,control input is adjusted in a graphical user interface( GUI),besides,control input is further optimized by learning control concept,finally,the NN controller is trained and obtain the expected one. The switch between the NN controller and PI controller is designed under the different deviation,and it can overcome steady state error come from using only the NN controller. The proposed method is verified effective by simulation.
作者 李联飞 刘渭苗 程志强 杨文峰 王小哲 刘松 LI Lian-fei;LIU Wei-miao;CHENG Zhi-qiang;YANG Wen-feng;WANG Xiao-zhe(China National Heavy Machinery Research Institute Co.,ltd.,Xi'an 710032,China;Air Defease and Anti-Missile College,Air Foree Engineering University,Xi’an 710051,China)
出处 《重型机械》 2018年第4期13-17,共5页 Heavy Machinery
关键词 可视化 神经网络 切换 学习控制 visualization NN switch learning control
  • 相关文献

参考文献1

二级参考文献37

  • 1Ioannou P A, Sun J. Robust Adaptive Control. London: Prentice Hall, 1996
  • 2Fukuda M, Shin S. Model reference learning control with a wavelet network. Chapter 11, in Iterative Learning Control - Analysis, Design, Integration and Applications, edited by Bien Z. and Xu J-X, Boston: Kluwer Academic Press, 1998
  • 3Xu J-X, Tan Y. Learning wavelet control using constructive wavelet networks. Chapter 9, in Linear and Nonlinear Iterative Learning Control, Berlin: Springer Verlag, 2003
  • 4Sun M X, Huang B J. Iterative Learning Control. Beijing: Defence Industry Press, 1999
  • 5Xu J-X, Tan Y. Linear and Nonlinear Iterative Learning Control. In series of Lecture Notes in Control and Information Sciences 291, Berlin: Springer Verlag, 2003
  • 6Bien Z, Hui K M. High-order iterative learning control algorithm. IEE Proceedings, Part D, Control Theory and Applications, 136(3): 105-112
  • 7Xu J-X, Tan Y. Robust optimal design and convergence properties analysis of iterative learning control approaches. Automatica, 2002, 38(11): 1687-1880
  • 8Gotou M, Matsubayashi S, Miyazaki F, Kawamura S,Arimoto S. A robust servo system with an iterative learning compensator and a proposal of multi-period learning compensator. System and Control Magazine,1987, 31(5): 367-374
  • 9Roover D. Synthesis of a robust iterative learning control system using an H∞ approach. In: Proceeding of 35th IEEE Conference on Decision and Control, Kobe, 1996. 3044-3049
  • 10Saab S S. A discrete-time stochastic learning control algorithm. IEEE Transactions on Automatic Control,2001, 46(6): 877-887

共引文献75

同被引文献17

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部