摘要
为了研究同宿轨向量场的一个新的扰动现象,通过高阶Melnikov函数,构造了一类同宿轨向量场的特征扰动空间,使得在此空间中的函数的扰动下,向量场的同宿轨依然存在,并证明了该特征扰动空间为Banach空间.这个结果进一步完善了同宿轨向量场理论.
It was mainly studied a new perturbation phenomenon on vector field with homoclinic orbits. By high order Melnikov functions,the characteristic perturbation space was obtained. The homoclinic orbits were showed still existed by the perturbation from the functions in this space. Finally the characteristic perturbation space was proved to be a Banach space. This result provides the theory of the vector field with homoclinic orbits a further improvement.
作者
钟溢
陈凤娟
ZHONG Yi;CHEN Fengjuan(College of Mathematics,Physics and Information Engineering,Zhejiang Normal University,Jinhua 321004,China)
出处
《浙江师范大学学报(自然科学版)》
CAS
2018年第3期255-262,共8页
Journal of Zhejiang Normal University:Natural Sciences
基金
国家自然科学基金资助项目(11171309
11471289)
关键词
同宿轨
高阶Melnikov函数
特征扰动函数
特征扰动空间
homoclinic orbits
high order Melnikov function
characteristic perturbation function
character-istic perturbation space