期刊文献+

一种基于可信策略的云存储持久性检测方法 被引量:6

Method of cloud storage persistence detection based on trust policy
下载PDF
导出
摘要 如何确保存储在云端的数据不丢失、不被窜改,是云存储提供商及用户共同关注的问题。云存储持久性是一个对云存储性能优劣进行评估测量的重要指标。基于对现有服务等级协议(service-level agreement,SLA)的调研与分析,针对目前云存储持久性定义不完善,且缺乏客观的第三方检测工具的问题,分别从概念描述与形式化表达两个角度进一步规范了云存储持久性的定义;为了保证被检测数据的真实性及检测过程的客观性,提出一种综合随机检测数、随机检测序列、MD5及秘钥的可信检测算法,并设计实现了对应的检测工具。实验结果显示,该算法的查全率和准确率都达到了100%,验证了算法的有效性和可靠性,实现了基于可信策略的云存储持久性检测,为进一步的研究打下了基础。 How to ensure that the data stored in the cloud will not be lost,and will not be tampered is concerned by both cloud storage providers and users.Cloud storage persistence is an important metric for evaluating cloud storage performance.Based on the research and analysis of the existing service level agreement (SLA),this paper analyzed the problem that the current definition of cloud storage persistence was imperfect,and the lack of objective third-party testing tools,and respectively,from the angles of abstract conceptual description and formal expression,it further regulate the definition of cloud storage persistence.Furthermore,in order to ensure the authenticity of the detected data and the objectivity of the detection process,this paper presented a trusted detection algorithm that combines random detection numbers,random detection sequences,secret keys,and MD5,and finally achieved an effective detection tool.Experimental results show that the algorithm of the recall rate and accuracy rate of 100%,and verifies the validity and reliability of the algorithm.It realizes the cloud storage persistence detection based on trusted strategy,which lays the foundation for further research.
作者 徐建鹏 李欣 孙海春 Xu Jianpeng;Li Xin;Sun Haichun(College of Information Technology & Network Security,People's Public Security University of China,Beijing 100038,China)
出处 《计算机应用研究》 CSCD 北大核心 2018年第8期2439-2442,共4页 Application Research of Computers
基金 国家"863"计划资助项目(2015AA016009)
关键词 云存储 云服务等级协议 数据持久性 可信策略 MD5算法 cloud storage cloud service level agreement data persistence trusted strategy MD5 algorithm
  • 相关文献

参考文献3

二级参考文献120

  • 1李梦君,李舟军,陈火旺.基于进程代数安全协议验证的研究综述[J].计算机研究与发展,2004,41(7):1097-1103. 被引量:25
  • 2HILL Z, LI Jie, MAO Ming,et al. Early observations on the perform- ance of Windows Azure [ C ]//Proe of the 19th ACM International Symposium on High Performance Distributed Computing. Hew York: ACM Press,2010:367- 376.
  • 3GARFINKEL S L. A evaluation of Amazon' s grid computing serv- ices: EC2, S3 and SQS[ R]. USA: School for Engineering and Ap- pl.ied Sciences, Harvard University, 2007.
  • 4COOPER B F, SILBERSTEIN A, TAM E,et al. Benchmarking cloud serving systems with YCSB[ C]//Proc of the 1st ACM Symposium on Cloud Computing. Hew York : ACM Press,2010 : 143- 154.
  • 5SOBEL W, SUBRAMANYAM S, SUCHARITAKUL A, et al. Cloud- stone: multi-platform multi-language bench/hark and measurement tools for Web 2.0 [ C ]//Proc of Cloud Computing and Its Applications Conference. 2008.
  • 6CHAN Yan-pei, GANAPATHI A. Towards understanding cloud per- formance tradeoffs using statistical workload analysis and replay, Technical Report UCB/EECS-.20.1.Q-81 [ R]. 2010.
  • 7GUO F, EFSTATHOPOULOSBuilding a highperformance dedn- plication system [ C ]//Proc of the '2011 USENIX Annual Technical Conference. 2011:25.
  • 8Yun A, Shi C, Kim Y. On protecting integrity and confidentiality of cryptographic file system for outsourced storage [C] //Proc of ACM Workshop Cloud Computing Security (CCSW 2009). New York: ACM, 2009:67-76.
  • 9Rackspace. JungleDisk [EB/OL]. 2010 [ 2011-01-09 ]. http://www, jungledisk, com/.
  • 10Vrable M, Savage S, Voelker G M. Cumulus: Filesystem Backup to the cloud [J]. ACM Trans on Storage, 2009, 5 (4): 1-28.

共引文献118

同被引文献43

引证文献6

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部