期刊文献+

基于连通图的视觉显著区域检测研究 被引量:1

Visual saliency detection based on connected graph
下载PDF
导出
摘要 显著性区域检测是指自动识别出图像中最感兴趣、最重要的区域,目前在目标识别、图像检索等领域应用广泛。基于图的流形排序的显著区域检测算法虽然能够准确高效地检测出一幅图像中的显著性区域,但该算法中使用的K正则图描述的各顶点的空间连接性的图的结构存在局限。为解决上述局限性,研究构造一个更一般的连通图,在显著目标较大或显著目标不连续的情况下,能够更准确地检测出显著性区域。通过在CSSD、SOD、ASD和SED2四个标准数据集上进行大量验证性实验,与六种现有的代表性方法相比,实验结果在PR曲线、F值、MAE等多个指标均表明改进算法有明显的提高,有效验证了算法的有效性。 Visual saliency detection is automatically to detect the most interesting and important area, which is widely used to many applications, such as object recognition, image retrieval and so on. The graph based manifold ranking method could detect the salient area effectively, but the constructed K-regular graph could not represent the image completely. In order to solve the above -mentioned limitation, it constructed a new connected graph to indicate the relationship between image nodes, which could get more accurate results especially on images who had large or discontinuous saliency map. It performed extensive experiments on four benchmarks comparing with six state-of-the-art methods. The results of this method are better than other methods by the standard of the PR-curve, MAE and so on.
作者 肖云 陈新宇 汤进 张海涛 Xiao Yun;Chen Xinyu;Tang Jin;Zhang Haitao(School of Computer Science & Technology,Anhui University,Hefei 230601,China)
出处 《计算机应用研究》 CSCD 北大核心 2018年第8期2503-2505,2519,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(61472002) 大学生创新创业训练项目(201610357036 201610357405) 安徽大学信息保障技术协同创新中心课题项目
关键词 显著性目标检测 流形排序 连通图 saliency detection manifold ranking connected graph
  • 相关文献

参考文献3

二级参考文献25

  • 1Li W T, Chang H S, Lien K C, et al.. Exploring visual and motion saliency for automatic video object extraction[J]. IEEE Transactions on Image Processing, 2013, 22(7): 2600-2610.
  • 2Chen D Y and Luo Y S. Preserving motion-tolerant contextual visual saliency for video resizing[J]. IEEE Transactions on Multimedia, 2013, 15(7): 1616-1627.
  • 3Borji A and Itti L. State-of-the-art in visual attention modeling[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1): 185-207.
  • 4Itti L, Koch C, and Niebur E. A model of saliency-based visual attention for rapid scene analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(11): 1254-1259.
  • 5Borji A, Sihite D N, and Itti L. Quantitative analysis of human-model agreement in visual saliency modeling: a comparative study[J]. IEEE Transactions on Image Processing, 2013, 22(1): 55-69.
  • 6Borji A, Sihite D N, and Itti L. Salient object detection: a benchmark[C]. Proceedings of the European Conference on Computer Vision, Florence, 2012: 414-429.
  • 7Achanta R, Estrada F, Wils P, et al.. Salient region detection and segmentation[C]. Proceedings of the International Conference on Computer Vision Systems, Heraklion, 2008: 66-75.
  • 8Achanta R, Hemami S, Estrada F, et al.. Frequency-tuned salient region detection[C]. Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, Miami, 2009: 1597-1604.
  • 9Cheng M M, Zhang G X, Mitra N J, et al.. Global contrast based salient region detection[C]. Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, Providence, 2011: 409-416.
  • 10Goferman S, Zelnik-Manor L, and Tal A. Context-aware saliency detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(10): 1915-1926.

共引文献13

同被引文献23

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部