摘要
首次采用溶液燃烧合成法制备了钙铜复合吸收剂用于实现低成本CO_2捕捉。在热重分析仪上研究制备参数(燃烧背景温度、煅烧时间)对吸收剂循环载氧和CO_2捕捉性能的影响,并借助SEM和氮吸附分析其微观结构。结果表明,在燃烧背景温度800℃、煅烧时间为0.5h时制得的钙铜比例为1∶1的复合CO_2吸收剂15次循环之后,钙基吸收剂转化率为51.2%,比纯的Ca O提高了44.9%;采用该方法制备的吸收剂具备自活化特性,15次循环内碳酸化性能随循环次数的增加不降反升,且载氧性能非常稳定,氧化率始终高于90%。微观结构表征表明,随着循环次数的增加,复合吸收剂未发生严重烧结并且BET比表面积没有下降。实验结果为溶液燃烧合成法制备高性能钙铜复合CO_2吸收剂的进一步研究提供了基础数据。
Solution combustion synthesis was firstly adopted to prepared Ca/Cu composites for low-cost carbon capture. The synthesis conditons such as background temperature of combustion and calcination time were investigated on a thermogravimetric analyzer to test their effects on the performance and cyclic stability of the sorbents. Microstructure of the sorbent was further analyzed by SEM and nitrogen sorption. It was demonstrated that carbonation of Ca/Cu composites, calcinated at background temperature of 800℃ for 0.5 h with molar ratio of Ca∶Cu=1∶1 after 15 cycles, reached 51.2%, 44.9%, higher than that of pure Ca O. The as-synthesized sorbents possessed a clear self-activation capacity through the 15 cycle tests, exhibiting enhanced carbonation performance with the increase of cycles. Meanwhile, the ability of oxygen-carrying kept stable, with the oxidation rate higher than 90%. Microstructure characterization indicated that there was no severe sintering or decline in BET specific area for Ca/Cu composites after 15 cycles. The results provide valuable data for further study of Ca/Cu composites by solution combustion synthesis.
作者
石田
陈健
段伦博
赵长遂
SHI Tian;CHEN Jian;DUAN Lunbo;ZHAO Changsui(Key Laboratory of Energy Thermal Conversion and Control,Ministry of Education,School of Energy and Environment,Southeast University,Nanjing 210096,Jiangsu,China)
出处
《化工进展》
EI
CAS
CSCD
北大核心
2018年第8期3086-3091,共6页
Chemical Industry and Engineering Progress
基金
国家重点研发计划中美清洁能源联合研究中心项目(2016YFE0102500-06-01)