期刊文献+

基于结构分解的动态图增量匹配算法 被引量:3

Incremental Pattern Matching Algorithm for Dynamic Graph Based on Structure Decomposition
下载PDF
导出
摘要 在大数据时代,图数据的规模急剧增长,增量图模式匹配技术能够在数据图发生变化时避免重新对整个数据图进行匹配,进而减少匹配时间,提高整体执行效率,因此成为研究热点。然而,现有的增量匹配算法处理规模较大的模式图时效率会降低。针对该问题,提出了一种基于结构分解的增量图模式匹配算法Inc_CFLS。在匹配过程中,为中间匹配结果构建高效索引,用于后续的模式匹配计算。基于构建的索引信息对数据图增加边事件进行分类,进而为每类增加边事件设计查询剪枝优化策略,从而有效提高匹配效率。在真实数据集上进行实验,结果表明Inc_CFLS算法比目前最好的增量匹配算法在执行效率上平均提升了1~2倍,能更有效支持大规模动态图上的模式匹配。 In the age of big data, the scale of data graphs expands rapidly. The incremental graph pattern matching technique becomes a research focus, since it avoids re-computing matches in the whole data graph, as a result reducing the matching time and improving the overall execution performance when the data graph changes. However, the effi- ciency of existing incremental matching algorithms will reduce when dealing with large scale patterns. To tackle this problem, this paper proposes a novel incremental graph pattern matching algorithm based on structural decomposi- tion named Inc CFLS. The Inc CFLS algorithm constructs an efficient index based on intermediate matched results, and the index is utilized to speed up subsequent pattern matching calculations. The Inc_CFLS algorithm further makes use of the index information to classify the edge insertion events over the data graph into different event classes, and designs query pruning optimization strategies for each of these event classes, which effectively improves the matching efficiency. The experimental results over physical-world datasets show that the proposed Inc_CFLS algo- rithm runs 1-2 times faster than the state-of-the-art incremental graph matching algorithm. Especially, the Inc CFLS algorithm can effectively handle graph pattern matching analysis over large dynamic graphs.
作者 许嘉 张千桢 赵翔 吕品 李陶深 XU Jia1,2,3, ZHANG Qianzhen1, ZHAO Xiang4, LV Pin1,2,3, LI Taoshen1,2(1. School of Computer, Electronics and Information, Guangxi University, Nanning 530004, China; 2. Guangxi Colleges and Universities Key Laboratory of Parallel and Distributed Computing, Nanning 530004, China; 3. Guangxi Key Laboratory of Multimedia Communications Network Technology, Nanning 530004, China; 4. College of Information System and Management, National University of Defense Technology, Changsha 410073, Chin)
出处 《计算机科学与探索》 CSCD 北大核心 2018年第8期1214-1224,共11页 Journal of Frontiers of Computer Science and Technology
基金 国家自然科学基金Nos.61402494 61402498 61402513 广西自然科学基金青年基金Nos.2015GXNSFBA139243 2016GXNSFBA380182 广西大学科研基金Nos.XGZ141182 XGZ150322 广西高等教育本科教学改革工程项目重点项目No.2017JGZ103~~
关键词 动态图 图模式匹配 增量算法 结构分解 大图数据 dynamic graphs graph pattern matching incremental algorithm structure decomposition big graph data
  • 相关文献

参考文献2

二级参考文献81

  • 1Microsoft Academic Search. Explore researchers' cooperating network.[2009-12-01 J.[2014-11-20]. http://academic. research. microsoft. com/VisualExplorer.
  • 2Brynielsson J, Hogberg J, Kaati L, et al. Detecting social positions using simulation[C]//Proc of 2010 Int Conf on Advances in Social Networks Analysis and Mining (ASONAM). Alamitos, CA: IEEE, 2010: 48-55.
  • 3Palantir. Products Built for A Purpose.[2004-01-01].[2014-11-20]. https://www.palantir.com/.
  • 4Malewicz G, Austern M H, Bik A J C, et al, Pregel , A system for large-scale graph processing[C]//Proc of the 2010 ACM SIGMOD Int Conf on Management of Data. New York: ACM, 2010: 135-146.
  • 5Sarwat M, Elnikety S, He Y, et al. Horton: Online query execution engine for large distributed graphs[C]//Proc of the 28th IEEE Int Conf on Data Engineering (ICDE J. Alamitos, CA: IEEE, 2012: 1289-1292.
  • 6Low y, Gonzalez J, Kyrola A, et al. Graphlab , A new framework for parallel machine learning[C]//Proc of the 26th Conf on Uncertainty in Artificial Intelligence (UA]). Oregon, USA: AUAI, 2010.
  • 7Michael R G, David S J. Computers and intractability: A guide to the theory of NP-completeness[R]. New York: W. H. Freeman Company, 1979.
  • 8Christmas W J, Kittler J, Petrou M. Structural matching in computer vision using probabilistic relaxation[J]. Pattern Analysis and Machine Intelligence, 1995, 17(8): 749-764.
  • 9Ullmann J R. An algorithm for subgraph isomorphism[J]. Journal of the ACM (JACM), 1976,23(1): 31-42.
  • 10Cordelia L P, Foggia r. Sansone C, et al. A (sub) graph isomorphism algorithm for matching large graphs[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2004, 26(10): 1367-1372.

共引文献36

同被引文献27

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部