摘要
由于利率期限结构中包含未来经济运行的信息,本文首次利用2006年4月到2014年12月中美两国利率期限结构的月度数据,通过动态Nelson-Siegel模型抽取两国利率期限结构的相对水平、相对斜率和相对凸度三个相对因子,基于三个相对因子检验其对人民币兑美元汇率的预测能力。实证研究表明:第一,相对因子模型对汇率在1个月到12个月的预测期具有可预测性,相对水平因子或相对斜率因子增加1%分别导致人民币升值1%和2%,而相对凸度因子增加1%会导致人民币贬值1%;第二,基于CW检验统计量的滚动窗预测表明,在所考虑的各个滚动窗和预测期下,相对因子模型的预测能力优于随机游走模型和非抛补利率平价模型。因此,可以利用利率期限结构中的信息提高预测汇率变动的精度。
Since the term structure of interest rates embodies information about future economic activity,this paper uses dynamic Nelson-Siegel model to extract relative level,slope and curvature based on monthly data of interest rate of term structure of China and United States from April 2006 to December 2014 and analyses forecasting ability of relative factors on RMB to US Dollar exchange rate. The empirical study shows that: first,the relative factors model can predict exchange rate changes 1 to 12 months ahead,1% increase in relative level or slope predicts 1% and 2% annualized appreciation of the Renminbi respectively,1% increase in relative curvature predicts 1% annualized depreciation of the Renminbi; Second,the rolling window forecasting based on Clark-West statistics shows that relative factors model outperforms random walk model and uncovered interest parity model for any given rolling windows and forecasting periods. The results reveal that we can improve the prediction accuracy of exchange rate by use of the information included in term structure of interest rate.
作者
邓明
吴亮
Deng Ming;Wu Liang
出处
《数量经济研究》
CSSCI
2018年第1期38-53,共16页
The Journal of Quantitative Economics
基金
国家自然科学基金青年项目“人口老龄化下的技术进步方向与要素收入份额”(71503220)
教育部人文社会科学重点研究基地重大项目“集聚经济下的中国地方政府财税行为研究”(15JJD790029)
厦门大学校长基金“要素市场扭曲、偏向性技术进步与要素收入份额”(20720171028)的联合资助