期刊文献+

利用量子遗传算法实现RNA二级结构预测

RNA secondary structure prediction using the quantum genetic algorithm
下载PDF
导出
摘要 由于基于最小自由能模型的传统算法复杂度高且搜索效率低,故利用量子遗传算法提出了一种新的核糖核酸二级结构的预测算法.该算法将种群信息加载到量子比特上完成初始化,通过量子酉变换(量子逻辑门)实现种群的更新与演化,借助于量子计算的并行性优势使得核糖核酸二级结构预测所需种群规模相对经典遗传算法大为减少,同时还具有更强的搜索预测能力.基于国际核糖核酸标准数据库提供的序列进行了量子模拟实验计算,结果表明,在种群规模为经典遗传算法20%的条件下,该算法预测准确率仍优于经典遗传算法,且所需的进化轮数也得到了明显降低. Due to the high complexity and low search efficiency of the traditional algorithm based on the minimum free energy model,aquantum genetic algorithm for RNA secondary structure prediction is proposed,where the group is initialized by coding with qubits and the corresponding evolutions are accomplished by quantum unitary operations(i.e.,quantum gates).By using this strategy,the scale of the required groups is reduced significantly due to the parallelism of quantum computing which also leads to a more powerful searching ability compared with the classical genetic algorithm.Based on the sequences offered by RNA STRAND database,the algorithm was tested by quantum simulations.Numerical results show that,for even only 20% of groups exploited with respect to the classical genetic algorithm,the prediction accuracy yielded by this strategy is still superior to that of the classical one,and that the number of evolution rounds is also obviously reduced by using this algorithm.
作者 刘阳 李佳桥 王凡 王增斌 石莎 LIU Yang;LI Jiaqiao;WANG Fan;WANG Zengbin;SHI Sha(School of Cyber Security,Univ.of the Chinese Academy of Sciences,Beijing 100049,China;Institute of Information Engineering,Chinese Academy of Sciences,Beijing 100093,China;National Computer Network Emergency Response Technical Coordination Center,Beijing 100029,China;School of Telecommunications Engineering,Xidian Univ.,Xi'an 710071,China;Quantah Systems Sci.~Tech.Stockholdings Ltd.Beijing 100095,China;School of Life Sciences and Technology,Xidian Univ.,Xi'an 710071,China)
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2018年第4期112-117,共6页 Journal of Xidian University
基金 国家自然科学基金资助项目(61502376 61771377 61301172) 陕西省国际科技合作与交流计划资助项目(2015KW-037 2017KW-003)
关键词 量子计算 量子算法 量子模拟 核糖核酸 二级结构预测 quantum computing quantum algorithms quantum simulation ribonucleic acid secondary structureprediction
  • 相关文献

参考文献1

二级参考文献11

  • 1Canfora G, Penta M D, Esposito R, et al. A Lightweight Approach for QoS-aware Service Composition[C]// Proceedings of the 2nd International Conference on Service Oriented Computing (ICSOC'04). New York: ACM, 2004: 36-47.
  • 2Zeng L, Benatallah B. QoS-aware Middleware for Web Services Composition[J]. IEEE Trans on Software Engineering, 2004, 30(5): 311-327.
  • 3Wang Junli, Hou Yubing. Optimal Web Service Selection based on Multi-Objective Genetic Algorithm[C]//Proceeding of 2008 International Symposium on Computational Intelligence and Design. Wuhan: IEEE Computer Society, 2007: 553-556.
  • 4Ma Yue, Zhang Chengwen. Quick Convergence of Genetic Algorithm for QoS-driven Web Service Selection[J]. Computer Networks, 2008, 52(5): 1093-1104.
  • 5Vanrompay Y, Rigole P, Berbers Y. Genetic Algorithm-based Optimization of Service Composition and Deployment [C]//Proceedings of the 3rd International Workshop on Services Integration in Pervasive Environments. Sorrento: ACM, 2008: 13-17.
  • 6Zeng L, Benatallah B. Quality Driven Web Service Composition[C]//Proceedings of the 12th International Conference on World Wide Web. Budapest: ACM, 2003: 411-421.
  • 7Rumbaugh J, Jacobson I, Booeh G. The Unified Modeling Language Reference Manual[M]. New Jersey: Addison- Wesley, 1999.
  • 8Gao Chunming, Cai Meiling, Chen Huowang. QoS-aware Service Composition Based on Tree-Coded Genetic Algorithm [C] //Proceedings of the 31st Annual International Computer Software and Applications Conference. Sorrento: IEEE Computer Society, 2007: 361-367.
  • 9Han K H, Kim J H. Quantum-Inspired Evolutionary Algorithm for a Class of Combinatorial Optimization [J]. IEEE Trans on Evolutionary Computation, 2002, 6(6) : 580-593.
  • 10霍红卫,许进,保铮.基于遗传算法的0/1背包问题求解[J].西安电子科技大学学报,1999,26(4):493-497. 被引量:27

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部