摘要
针对一类具有外部有界噪声干扰的分数阶线性时滞系统,利用卷积的推广Young不等式,讨论了PD~α型分数阶迭代学习控制算法(FOILC)在Lebesgue-p(L^p)范数意义下的鲁棒性,获得其鲁棒收敛的条件。理论分析表明,若选取适当的学习增益矩阵,在系统受到外部有界噪声干扰时,随着迭代次数的增加,该算法能够保证系统的跟踪误差一致收敛有界。数值仿真验证了该算法的可行性和理论的正确性。
For a class of fractional-order linear time-delay systems with the bounded external noises,by taking advantage of the generalized Young inequality of convolution integral,the robustness of PD-α type fractional-order iterative learning control(FOILC) was studied in the sense of Lebesgue-p(L-p) norm,and the condition of robustness was obtained.The results manifest that,under some given proper learning gains,through the iterative learning process,the algorithm can guarantee the tracking error are uniform boundedness when the systems are disturbed by the bounded external noises.The succedent simulations support the feasibility of this algorithm and the correctness of the theory.
作者
张克军
彭国华
窦建君
ZHANG Ke-jun;PENG Guo-hua;DOU Jian-jun(School of Math and Physical Sciences,Xuzhou Institute of Technology,Xuzhou 221018,China;School of Natural and Applied Sciences,Northwestern Polytechnical University,Xi'an 710129,China)
出处
《科学技术与工程》
北大核心
2018年第20期130-134,共5页
Science Technology and Engineering
基金
国家自然科学基金青年项目(61201323)
徐州工程学院科研项目(XKY2015202
XKY2017112
XKY2017223)资助
关键词
迭代学习控制
分数阶
L^p范数
鲁棒性
iterative learning control
fractional-order L^p norm
robustness