期刊文献+

基于室内对流换热人体热反应模型的生理参数预测 被引量:5

Prediction of Human Physiological Parameters by Thermal Response Model in Indoor Convective Environments
下载PDF
导出
摘要 为了在不同对流换热方式的室内环境中对皮肤温度、核心温度等人体生理参数进行有效的预测,基于Fiala模型,综合考虑不同对流方式对人与环境换热量的影响,尤其是通过修正不同对流方式的对流换热系数、平均辐射温度以及服装热阻等,建立了室内对流环境中的人体热反应模型。通过将模拟值与文献实验值进行对比来验证所建模型的有效性,结果表明两者高度吻合。在自然对流、混合对流环境下,平均皮肤温度预测误差以及受迫对流环境下人体大部分部位局部温度预测误差均小于1℃。所建模型可用于各种对流空调环境下的人体生理参数预测,为新型对流空调系统设计、评估以及规范修正等提供参考。 A human thermal model was presented that is used to predicting thermal physiology of the human body,such as skin temperature and core temperature,to assess human comfort in kinds of convective conditions.Based on Fiala-model,this model includes the effect of different types of convection on the heat transfer coefficient and mean radiant temperature.The developed model has been validated by comparing subject test in three different ventilated cases.The predicting errors of mean skin temperature in natural,mix convection and local skin temperature in forced convection are less than 1 ℃.Thus,the present model can be used to predict physiological behavior of human body in various ventilated environment as a foundation for estimate of human thermal comfort of new ventilated technologies and revision of design specifications.
作者 唐敏 韩杰 张国强 TANG Min;HAN Jie;ZHANG Guo-qiang(College of Civil Engineering,Hunan University,Changsha 410082,China)
出处 《科学技术与工程》 北大核心 2018年第20期154-161,共8页 Science Technology and Engineering
基金 国家国际科技合作专项(2014DFA72190 2014DFE70230)资助
关键词 对流 人体热调节 热舒适 皮肤温度 生物传热 convection human thermoregulation themlal conffort skin temperature biological heat transfer
  • 相关文献

参考文献3

二级参考文献49

  • 1Bauman F, Arens E, Fountain M, et al. Localized thermal distribution for office buildings, final report-phase Ⅲ [ R ]. Center for Environmental Design Research, University of California, Berkeley, 1994.
  • 2Seem JE, Braun JE. The impact of personal environmental control on building energy use[J]. ASHRAE Transactions, 1992,98(part 2) :903 -909.
  • 3Glieksman LR, Taub SC. Thermal and behavioral modeling of occupant-controlled heating, ventilation and air conditioning systems [J]. Energy and Buildings, 1997,25(3) :243 - 249.
  • 4Heinemeier K, Bauman F, Schiller G, et al. The implication of task conditioning for comfort and energy [ C ]. Proceedings of ACEEE Summer Study on Energy Efficiency in Buildings, 1990,3 : 109 - 118.
  • 5Hedge A, Michael A, Parmelee SL. Improving thermal comfort in offices: the impact of underfloor task ventilation [ C ]. Proceedings of the Human Factors Society 34th Annum Meeting-Orlando'90, 1990: 537 - 540.
  • 6Bauman FS, Carter TG, Baughman AV, et al. Field study of the impact of a desktop task/ambient conditioning system in office buildings[ J]. ASHRAE Transactions, 1998,104(1b) : 1153 - 1171.
  • 7Brager GS, De Dear, RJ. Thermal adaptation in the built environment : a literature review[ J]. Energy and Buildings, 1998,27( 1 ) :83 - 96.
  • 8Toftum J, Nielsen R. Draught sensitivity is influenced by general thermal sensation[J]. International Journal of Industrial Ergonomics, 1996,18(4) : 295 - 305.
  • 9Sekhar SC, Gong N, Tham KW, et al. Findings of personalized ventilation studies in a hot and humid climate [ J ]. International Journal of Heating, Ventilating, Air-conditioning and Refrigerating Research,2005,11(4) :603 - 620.
  • 10Zhang H. Human thermal sensation and comfort in transient and nonuniform thermal environment [ D ].California: University of California, 2003.

共引文献18

同被引文献23

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部