期刊文献+

一种异构集成学习的儿科疾病诊断方法研究 被引量:8

A METHOD OF PEDIATRIC DISEASE DIAGNOSIS BASED ON HETEROGENEOUS INTEGRATION LEARNING
下载PDF
导出
摘要 为提升儿科医生诊断效率及准确性,采取一种基于数据挖掘与机器学习相结合的分类技术。通过收集一定量的儿科患者病历样本,参考儿科医学书籍及资料,并利用数据挖掘的方法,从这些样本中提取出患者的病症和疾病数据,建立机器学习算法模型。对这些模型结果采用融合的方法进行集成,从而预测出未知样本的疾病结果。医生等相关人员可以利用这些结果作为参考,进而得出疾病诊断的结论。通过对总体样本"自助法"划分训练集与测试集,集成并预测,得到的实验结果表明,集成模型与其构成的单一模型相比,准确率提高了约6%。 To improve pediatrician diagnostic efficiency and accuracy,a classification technique based on data mining and machine learning is adopted. By collecting a certain amount of pediatric patients' medical records,referring to pediatric medical books and information,and using data mining methods,the patient's illness and disease data were extracted from these samples to build a machine learning algorithm model. We integrated these model results by means of fusion to predict the disease outcome of unknown samples. Doctors and other relevant personnel used these results as a reference,and then come to the conclusion of disease diagnosis. By dividing the training set and the test set for the overall sample "self-help law ",the experimental results obtained show that the accuracy of the integrated model is improved by about 6% compared with that of the single model.
作者 霍东雪 刘辉 尚振宏 李润鑫 Huo Dongxue;Liu Hui;Shang Zhenhong;Li Runxin(Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, Yunnan, China)
出处 《计算机应用与软件》 北大核心 2018年第6期54-57,157,共5页 Computer Applications and Software
基金 国家自然科学基金项目(61462052) 云南省人才培养基金项目(KKSY201403049)
关键词 数据挖掘 多标签 异构集成学习 医疗 Data mining Multi-label Heterogeneous integration learning Medical
  • 相关文献

参考文献8

二级参考文献60

  • 1陈戏墨,徐红兵,李志铭,谢铉洋,李曦,李扬彬.数据挖掘在医学图像分类中的应用[J].现代计算机,2005,11(1):19-22. 被引量:4
  • 2何正友,蔡玉梅,钱清泉.小波熵理论及其在电力系统故障检测中的应用研究[J].中国电机工程学报,2005,25(5):38-43. 被引量:188
  • 3Aask,Eikvill.Text categorization:a survey,Technical Report #941[R]. Norwegian Computing Center, 1999.
  • 4Fabrizio S.Machine learning in automated text categorization[J].J of the ACM(JACM), 2002,34( 1 ) : 1-47.
  • 5Dietterich T G.Machine learning research:four current directions[J]. AI Magazine, 1997,18(4) :97-136.
  • 6Saltow G,Wong A,Yang C.A vector space model for automatic indexing[J].Communications of the ACM, 1975,18( 11 ) :613-620.
  • 7Bryll R,Gutierrez O R,Quek F.Attribute Bagging:Improving accuracy of classifier ensembles by using random features subsets[J]. Pattern Recognition Letters,2003,36(6):1291-1302.
  • 8Langley P,Iba W.Average-case Analysis of Nearest Neighbor algorithm[C]//Proceedings of the Thirteenth International Joint Conference on Artificial Intelligence.San Francisco,USA:Morgan Kaufmann Publishers, 1993 : 889-894.
  • 9Yang Yiming,Liu Xin.A re-examination of text categorization methods[C]//Proceedings of ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR'99), Berkeley, California, USA : 1999 : 42-49.
  • 10Yang Bisan, Jiao-Tao, Wang Teng-jiao, et al. Effective Multi-Label Active Learning for Text Classification[C].//KDD' 09: Proeeedings of the 15^th ACM SIGKDD international conference on Knowledge discovery and data mining. Paris, 2009:917-926.

共引文献57

同被引文献43

引证文献8

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部