期刊文献+

高速网络环境中适合大数据传输的改进UDT协议 被引量:3

ADVANCED UDT PROTOCOL FOR BIG DATA TRANSFER IN HIGH-SPEED NETWORK
下载PDF
导出
摘要 大数据时代的到来,数据快速增长,数据集合规模已经从TB级增长到PB级。而现有的网络传输带宽低,严重阻碍各地区机构之间的数据信息交流。UDT在广域网传输有着巨大的优势,在千兆网的环境中UDT具有传输速度快、传输稳定等优势。然而随着网络带宽的升级,10 Gbps乃至40 Gbps带宽的出现,UDT在这些环境中存在传输性能低、带宽占用率低、持续丢包等问题。通过分析10 Gbps带宽下UDT的传输瓶颈,提出了优化系统参数、增强UDT可靠性和减少系统调用代价的解决方案,提升了大数据的传输速度,增强了UDT在高速广域网的可适用性。 With the arrival of the big data era,data has grown rapidly. The data collection scale has grown from terabytes to petabytes,while the existing network transmission bandwidth is low,which severely hinders the exchange of data information between regional agencies. UDT has great advantages in wide area network transmission. In the environment of Gigabit network,UDT has the advantages of high transmission speed and stable transmission. However,with the upgrading of network bandwidth and the emergence of 10 Gbps and even 40 Gbps bandwidth,UDT has problems such as low transmission performance,low bandwidth occupancy,and continuous packet loss in these environments. By analyzing the transmission bottleneck of UDT with 10 Gbps bandwidth,a solution was proposed to optimize system parameters,enhance UDT reliability and reduce system call cost. The speed of transmission of big data had been improved,and the applicability of UDT to high-speed wide area networks had been enhanced.
作者 邢璐 严明 吴承荣 Xing Lu;Yan Ming;Wu Chengrong(School of Computer Science, Fudan University, Shanghai 200433, China)
出处 《计算机应用与软件》 北大核心 2018年第6期138-145,共8页 Computer Applications and Software
基金 国家高技术研究发展计划项目(2015AA020104) 上海市科委科技创新行动重大项目(16DZ1100200)
关键词 高速网络传输 UDT 大数据传输 协议优化 High-performance network UDT Big data transfer Protocol optimization
  • 相关文献

参考文献1

二级参考文献68

  • 1Big data. Nature, 2008, 455(7209): 1-136.
  • 2Dealing with data. Science,2011,331(6018): 639-806.
  • 3Holland J. Emergence: From Chaos to Order. RedwoodCity,California: Addison-Wesley? 1997.
  • 4Anthony J G Hey. The Fourth Paradigm: Data-intensiveScientific Discovery. Microsoft Research, 2009.
  • 5Phan X H, Nguyen L M,Horiguchi S. Learning to classifyshort and sparse text Web with hidden topics from large-scale data collections//Proceedings of the 17th InternationalConference on World Wide Web. Beijing, China,2008:91-100.
  • 6Sahami M, Heilman T D. A web-based kernel function formeasuring the similarity of short text snippets//Proceedingsof the 15th International Conference on World Wide Web.Edinburgh, Scotland, 2006: 377-386.
  • 7Efron M, Organisciak P,Fenlon K. Improving retrieval ofshort texts through document expansion//Proceedings of the35th International ACM SIGIR Conference on Research andDevelopment in Information Retrieval. Portland, OR, USA,2012: 911-920.
  • 8Hong L,Ahmed A, Gurumurthy S,Smola A J, Tsioutsiou-liklis K. Discovering geographical topics in the twitterstream//Proceedings of the 21st International Conference onWorld Wide Web(WWW 2012). Lyon, France, 2012:769-778.
  • 9Pozdnoukhov A,Kaiser C. Space-time dynamics of topics instreaming text//Proceedings of the 3rd ACM SIGSPATIALInternational Workshop on Location-Based Social Networks.Chicago-IL,USA, 2011: 1-8.
  • 10Sun Yizhou,Norick Brandon, Han Jiawei, Yan Xifeng, YuPhilip S,Yu Xiao. Integrating meta-path selection with user-guided object clustering in heterogeneous information net-works/ /Proceedings of the 18th ACM SIGKDD InternationalConference on Knowledge Discovery and Data Mining.Beijing, China, 2012: 1348-1356.

共引文献713

同被引文献29

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部