摘要
某些国外文献提出了NHPP(Non-homogeneous Poisson Process)类SRGM(Software reliability growth models)的统一框架,以及基于统一框架的模型组合方法,以期提高SRGM的预测能力。参考NHPP类SRGM统一框架理论,运用算术、几何、调和加权平均方法,优化非NHPP类SRGM的模型系数及其加权系数。随机选取6个失效时间间隔故障数据集,验证了某些非NHPP类(Markov类、贝叶斯)SRGM的预测能力及其加权组合的效果。实验结果表明,即使到目前为止,非NHPP类SRGM尚没有所谓的统一框架理论,但基于实数编码GA算法的加权平均方法依然可以在某种程度上提高SRGM的预测能力。
Some foreign literature put forward a unified framework of NHPP SRGM and a model combination method based on a unified framework in order to improve the SRGM prediction ability. This article referred to the NHRP SRGM unified framework theory,using the arithmetic,geometry,harmonic weighted average method to optimize non-NHPP SRGM model coefficients and their weighting coefficients. We randomly selected six failure interval datasets to verify the effectiveness of some non-NHPP class(Markov class,Bayesian) SRGM prediction ability and its weighted combination.The experiment result show even without a unified scheme between Non NHPP(Markov and Bayesian) SRGM by now,the combination methods improve the prediction ability of SRGM and combined SRGM to some extent.
作者
崔霞
高建华
Cui Xia;Gao Jianhua(Department of Computer Science and Software Engineering, East China Normal University, Shanghai 200062, China;College of Information and Mechatronics , Shanghai Normal University, Shanghai 200234, China)
出处
《计算机应用与软件》
北大核心
2018年第6期226-229,共4页
Computer Applications and Software
基金
国家自然科学基金项目(61672355)
上海市引进技术的吸收与创新年度计划项目(JJ-YJCX-01-15-5250)
关键词
模型组合
全局收敛
软件可靠性
预测能力
Model combination
Global convergent
Software reliability
Prediction ability