期刊文献+

Multiplication of the Recombinant Strain Re-7 of Avian Influenza Virus Subtype H5 in MDCK Cells

Multiplication of the Recombinant Strain Re-7 of Avian Influenza Virus Subtype H5 in MDCK Cells
下载PDF
导出
摘要 This study was conducted to explore the multiplication pattern of the recombinant strain Re-7 of avian influenza virus subtype H5 in Madin Darby Canine Kidney (MDCK) cells and to determine the optimal multiplicity of infection (MOI) and the optimal time for virus harvest. The recombinant strain Re-7 was inoculated at different MOIs into MDCK cells grown in serum-free medium in 100 L bioreactors for replication. Then, the hemagglutination(HA) titer, 50% tissue culture infectious dose (TCID50) and 50% embryo infectious dose (EID50) of culture medium were measured once every 12 h from 24 h after virus inoculation to determine the optimal MOI. After that, virus was inoculated at the optimal MOI determined above into MDCK cells for large-scale virus replication to determine the optimal time for virus harvest. The results showed that the optimal MOI was 10 2, and the optimal time for virus harvest was 60 h after inoculation. Under these conditions, the HA titer, TCIDso per 1 mL and EIDso per 0.1 mL were increased to 1:102 4, 10^7.33 and 10^6.83, respectively. This study provides relatively stable parameters for large-scale production of the recombinant strain Re-7 of avian influenza virus subtype H5. This study was conducted to explore the multiplication pattern of the recombinant strain Re-7 of avian influenza virus subtype H5 in Madin Darby Canine Kidney (MDCK) cells and to determine the optimal multiplicity of infection (MOI) and the optimal time for virus harvest. The recombinant strain Re-7 was inoculated at different MOIs into MDCK cells grown in serum-free medium in 100 L bioreactors for replication. Then, the hemagglutination(HA) titer, 50% tissue culture infectious dose (TCID50) and 50% embryo infectious dose (EID50) of culture medium were measured once every 12 h from 24 h after virus inoculation to determine the optimal MOI. After that, virus was inoculated at the optimal MOI determined above into MDCK cells for large-scale virus replication to determine the optimal time for virus harvest. The results showed that the optimal MOI was 10 2, and the optimal time for virus harvest was 60 h after inoculation. Under these conditions, the HA titer, TCIDso per 1 mL and EIDso per 0.1 mL were increased to 1:102 4, 10^7.33 and 10^6.83, respectively. This study provides relatively stable parameters for large-scale production of the recombinant strain Re-7 of avian influenza virus subtype H5.
出处 《Animal Husbandry and Feed Science》 CAS 2018年第3期178-180,共3页 动物与饲料科学(英文版)
关键词 Avian influenza virus Recombinant strain MDCK cells Suspension culture Optimal multiplicity of infection (MOI) Harvest time Avian influenza virus Recombinant strain MDCK cells Suspension culture Optimal multiplicity of infection (MOI) Harvest time
  • 相关文献

参考文献7

二级参考文献72

共引文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部