期刊文献+

基于复合ADRC的压电陶瓷驱动器自适应控制

Adaptive Control of Piezoelectric Ceramic Actuator with Composite ADRC
下载PDF
导出
摘要 针对压电陶瓷驱动器固有的迟滞现象对其定位控制精度的影响问题,提出将自抗扰控制(ADRC)与改进Preisach逆模型相结合的控制方案.以模型输入、输出迟滞环的线性度为标准,目的是提高微动工作台的定位精度,从而提高微操作效率和成功率.为了验证所提出控制策略的有效性,通过无控制方法、改进逆Preisach控制方法、复合PID方法、ADRC控制和复合ADRC控制实验,得出所选用压电陶瓷驱动器的迟滞环比重分别为12.3%,5.8%,4.7%,2.5%,1.4%.不同控制方案所得实验结果证明,ADRC与迟滞逆模型相结合的控制方案具有良好的控制性能. To eliminate the influence of the inherent hysteresis phenomenon of the piezoelectric ceramic actuator,a control scheme based on the combination of the active disturbance rejection control( ADRC) and the improved Preisach model is proposed. Taking the linearity of hysteresis loop of the model's input and output as a criterion,the model is used to improve the positioning accuracy of the piezoelectric,thus improving the operating efficiency and success rate in bio manipulation. Through the experiments of different control schemes,the proportion of hysteresis loop is about 12. 3%( no control),5. 8%( improved inverse Preisach control),4. 7%( composite PID),2. 5%( ADRC),1. 4%( composite ADRC). The experimental results comparisons prove that the control scheme proposed has good performance.
作者 高金海 郝丽娜 项超群 祁紫轩 GAO Jin-hai;HAO Li-na;XIANG Chao-qun;QI Zi-xuan(School of Mechanical Engineering & Automation,Northeastern University,Shenyang 110819,China)
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2018年第8期1158-1162,共5页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(61573093 U1613205)
关键词 压电陶瓷 非线性 迟滞环 自抗扰控制 PREISACH模型 piezoelectric ceramic nonlinearity hysteresis loop ADRC Preisach model
  • 相关文献

参考文献2

二级参考文献31

  • 1金海龙,王新宇,王洪森,田宏毅.纳米材料在生物医学领域的应用与发展[J].仪器仪表学报,2006,27(z1):986-987. 被引量:3
  • 2赵锡芳,周鉴如,李小兵.在机器人轴孔装配中应用力传感器搜索找孔研究[J].上海交通大学学报,1995,29(5):93-96. 被引量:1
  • 3尹昕,卢桂章,赵新.大范围多目标微操作的目标视觉跟踪实现策略[J].高技术通讯,2006,16(2):143-148. 被引量:2
  • 4HUANG X, CHOI Y. Chemical sensors based on nano- structured materials [J]. Sensors and Actuators B: Chemi- cal. 2007, 122(2): 659-671.
  • 5XIE H, RONG W, WU A, et al. A nondestructive calibra- tion method for maximizing the range and accuracy of AFM force measurement [J]. Journal of Micromechanics and Microengineering, 2014, 24(2): 025005.
  • 6FUKUDA T, NAKAJIMA M, LIU P, et al. Nanofabrica- tion, nanoinstrumentation and nanoassembly by nanoro- boric manipulation [J]. The International Journal of Ro- botics Research. 2009, 28(4): 537-547.
  • 7HEERES E C, KATAN A J, van es M H, et al. A compact multipurpose nanomanipulator for use inside a scanning electron microscope [J]. Review of scientific instruments. 2010, 81(2): 23704.
  • 8FEARING R S. Survey of sticking effects for micro parts handling [C]. Intelligent Robots and Systems International Conference 1995, 2: 212-217.
  • 9LIU X, TAVAKOLI M. Adaptive inverse dynamics four-channel control of uncertain nonlinear teleoperation systems[J].Advanced Robotics, 2011, 25(13-14): 1729-1750.
  • 10KUIPERS M, IOANNOU P. Multiple model adaptive con- trol with mixing [J]. Automatic Control, IEEE Transac- tions on. 2010, 55(8): 1822-1836.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部