摘要
以超细软304不锈钢丝绳为基材,采用短针环形钩织和真空固相烧结的方法制备一种新型多孔管,研究了该多孔管的轴向冲击吸能特性。将多孔管(C)与6063铝合金空心薄壁管(T)复合制备了两种不同复合形式的复合管——外复合管(TC)、薄壁芯复合管(CTC)。对复合管结构及相应的铝合金空心薄壁管进行了轴向冲击吸能性能对比研究。结果表明:新型钩织多孔管具有优良的吸能特性,是良好的吸能结构组件。复合结构的能量吸收(EA)、初始峰值冲击载荷(PCF)和平均冲击载荷(MCF)均大于相应空心薄壁管。复合结构的变形模式受多孔管与空心薄壁管复合效应影响而发生变化。两种复合管中,薄壁芯复合管(CTC)的载荷效率(CFE)最大,并且高于相应的空心薄壁管,具有最好的吸能效果。
Taking ultrafine soft stainless steel 304 wire rope as the base material,a new type of porous tube was produced by the method of single annular crocheting and vacuum solid-phase sintering,and the axial crushing energy absorption properties of porous tube were studied. Then,two kinds of composite tubes,external composite tube( TC) and thin-wall core composite tube( CTC),were fabricated by the combination of porous tube( C) and thin-walled hollow tube( T) for aluminum alloy 6063,and the axial impact energy absorption properties of composite tube structures and corresponding thin-wall hollow tubes for aluminium alloy were researched comparatively. The results show that the new type of crochet-sintering porous tube has excellent energy-absorbing properties and it is a good energy-absorbing structural component. However,the energy absorption( EA),the initial peak crushing force( PCF) and the mean crusing force( MCF)of composite structures are all larger than the corresponding thin-walled hollow tubes,and the deformation mode of composite structures is influenced by the compound effect of porous tube and thin-walled hollow tube. Thus,between two kinds of composite tubes,the crushing force efficiency( CFE) of CTC is the maximum and even higher than that of the corresponding thin-walled hollow tube,and CTC has the best energy-absorbing effect.
作者
杨洁
肖小亭
吴菲
刘倩
Yang Jie;Xiao Xiaoting;Wu Fei;Liu Qian(School of Material and Energy,Guangdong University of Technology,Guangzhou 510006,China)
出处
《锻压技术》
CAS
CSCD
北大核心
2018年第7期176-182,191,共8页
Forging & Stamping Technology
基金
国家自然科学基金资助项目(51705085)
关键词
多孔管
6063铝合金空心薄壁管
复合结构
轴向冲击
防撞性
吸能特性
porous tube
thin-walled hollow tube for aluminum alloy 6063
composite structure
axial impact
crash worthiness
energy-absorbing properties