期刊文献+

一种基于CGLS和LSQR的联合优化的匹配追踪算法 被引量:3

A Matching Pursuit Algorithm of Jointing Optimization Based on CGLS and LSQR
下载PDF
导出
摘要 在压缩感知理论中,设计好的稀疏重构算法是一个比较重要,同时也是一个具有挑战性的问题.稀疏重构的基本目标是用较少的数据样本,通过解一个优化问题完成信号或者图像重构.关于稀疏重构过程,一个重要的研究方向是在数据受噪声干扰的情况下,如何高效快速地重建原信号.本文提出了基于共轭梯度最小二乘法(Conjugate gradient least squares,CGLS)和最小二乘QR分解(Least squares QR,LSQR)的联合优化的匹配追踪算法.该算法采用Alpha散度来测量CGLS和LSQR之间的离散度(差异度),并通过离散度来选择最优的解序列.实验分析表明基于CGLS和LSQR的联合优化的匹配追踪算法在压缩采样的信号受噪声干扰情况下具有较好的恢复能力. For compressed sensing theory, to design a good sparse reconstruction algorithm is a challenge. The basic purpose of sparse reconstruction is to implement the signal or image reconstruction by solving optimization problem on the condition of fewer data samples. For the sparse reconstruction, an important aspect is how to reconstruct original signal when data is contaminated by noise. In this article, we present a matching pursuit algorithm, in which the conjugate gradient least squares(CGLS) method combines the least squares QR(LSQR) method to solve the optimization. This algorithm uses alpha divergence to measure dispersion between CGLS and LSQR, then selects optimization solution sequence in light of the dispersion. Experiment shows that the matching pursuit algorithm has excellent reconstruction performance when the signal of compressed sampling is contaminated.
作者 陈善雄 熊海灵 廖剑伟 周骏 左俊森 CHEN Shan-Xiong;XIONG Hai-Ling;LIAO Jian-Wei;ZHOU Jun;ZUO(College of Computer and Information Science,Southwest University,Chongqing 400715)
出处 《自动化学报》 EI CSCD 北大核心 2018年第7期1293-1303,共11页 Acta Automatica Sinica
基金 国家自然科学基金(61303227) 中国博士后基金(2015M580765) 重庆市博士后科研项目(Xm2016041)资助~~
关键词 压缩感知 匹配追踪 稀疏恢复 噪声 Compressed sensing matching pursuit sparse reconstruction noise
  • 相关文献

参考文献4

二级参考文献74

  • 1李红,刘晓华.基于小波变换和视觉特性的多光谱图像融合[J].信号处理,2006,22(1):32-34. 被引量:9
  • 2Yu N, Qiu T, Bi F, Wang A. Image features Extraction and Fusion Based on Joint Sparse Representation [ J ]. IEEE Journal of selected topics in signal processing, 2011,5 (5) :1074-1052.
  • 3Rockinger O, Fechner T. Pixel-level image fusion: The case of image sequences [ J ]. Proc. SPIE, Bellingham, WA, 1998,3374:378 - 388.
  • 4Mitianoudis N. Stathaki T. Optimal Contrast Correction for ICA-Based Fusion of Multimodal Images [ J ]. IEEE SEN- SORS JOURNAL, December 2008,8 (12) : 2016-2025.
  • 5Candes E, Romberg J, Tao T. Robust uncertainty princi-/ ples:ples: Exact signal reconstruction from highly incomplete frequency information [ J ]. IEEE Trans. Inform. Theory, 2006,52 (2) :489-509.
  • 6Donoho D. Compressed sensing[ J]. IEEE Trans. Inform. Theory, 2006,52(4) : 1289-1306.
  • 7Baraniuk R. Compressive sensing[ J ]. IEEE Signal Pro- cessing Magazine, 2007,24 ( 4 ) : 118-121.
  • 8Luo X, Zhang J, Yang J, Dai Q. Image Fusion in Com- pressed Sensing[ C] JJ IEEE Int. Conf. Image Process. Cairo, Egypt, 2009. 2205-2208.
  • 9Wan T, Canagarajah N, Achim A. Compressive Image Fu- sion [ C ~ ///IEEE Int. Conf. hnage Process, San Diego, California, USA, 2008. 1308-1311.
  • 10Tropp J A,Wakin M,Duarte M F,Baron D,and Baraniuk R G. Random filters for compressive sampling and reconstruc- tion [C] ///IEEE Int. Conf. Acoustics, Speech, and Sigrtal Processing (ICASSP). Toulouse, France, 2006. 872-875.

共引文献170

同被引文献22

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部