摘要
课堂反馈作为最直接的教师-学生互动内容,对于MOOC课程中学生的课堂学习行为研究具有重要意义.大规模的课堂反馈记录有利于观察学生的参与度和活跃度变化规律;同时,课堂反馈内容又可以反映出学生的知识掌握程度,便于教师精准地捕捉学生反馈水平和优化教学结构.基于此,本文选取中国大学MOOC平台"课堂交流区"中的5万条教师-学生反馈记录作为研究对象,结合数学统计和自然语言处理等学习分析技术,从反馈记录的统计分析和反馈内容的话语分析两个方面入手,追踪学生在课程学习过程中的参与率和活跃度变化,并进一步探讨不同学科类型课程的学习行为差异及其课堂话语分布.结果表明:学生的反馈内容主要围绕主题内容展开,正面情感比例较高,但其参与率和活跃度较低,学习积极性有待提高.就不同学科类型课程的学习行为而言,艺术类课程的参与人数比例和反馈数量呈现出最优状态,反馈内容的广度均高于其他类型课程;文科类课程呈现出参与率高而活跃度低的不协调现象,反馈内容注重主题的深层次思考;而理科类课程力求简洁准确的回复主题,学生间的反馈重复度高,适当提高其课堂参与率和活跃度也将有助于学生间的学习交流,促进知识建构行为的优化发展.
As a popular interaction between students and instructors, MOOC classroom feedback analysis is crucial to the success of learning and teaching. It may help teachers to grasp students' learning situation precisely and promote students to examine themselves actively. Traditionally, instructors have to analyze these responses in a manually and costly manner. In this work, text-based student feedback after each lecture are automatically collected. Using statistical analysis and natural language processing technology, we then investigate student learning behavior from various reply records and text-- based feedback. Experimental results on a student feedback corpus from China College MOOC show how the student's engagement and activeness vary over time. We also demonstrate how students in various disciplines perform differently between their learn- ing behavior and classroom discourse distribution. The results show that students' feed- back almost focuses on these course contents themselves, and positive emotions account for a large proportion. But student's engagement and activeness are at a lower level, which need to be worth improving further. There was significant variability of learning behavior between and within different courses. For Arts courses, the rate of students' participation and the activeness of reply present the superior states, the extent of con- tent is higher than other courses. Liberal Arts courses expose the imbalance states be tween higher engagement and lower activeness, and feedback content focus on the deep thought of topic. While Science courses are inclined to reply questions compactly and re- peatable. The improvement of its engagement and activeness contributes to learning communication and knowledge construction process.
作者
谷欣
胡珀
何婷婷
周若玮
GU Xin;HU Po;HE Tingting;ZHOU Ruowei(Collaborative & Innovative Center for Educational Technology,Central China Normal University,Wuhan 430079,China;School of Computer Science,Central China Normal University,Wuhan 430079,China)
出处
《华中师范大学学报(自然科学版)》
CAS
北大核心
2018年第4期468-478,共11页
Journal of Central China Normal University:Natural Sciences
基金
国家自然科学基金项目(61402191)
华中师范大学中央高校基本科研业务费项目(CCNU18TS044
CCNU16JYKX15
CCNU16LPH006)
国家语委科研项目(WT135-11)
关键词
课堂反馈
学习行为分析
MOOC
classroom feedback
learning behavior analysis
MOOC