摘要
非奇异M-矩阵A与B的Fan积的最小特征值下界τ(A★B)的估计是矩阵理论研究的重要课题.利用Brauer定理和Gerschgorin定理给出最小特征值下界的新估计式.数值算例表明新估计式在一定条件下改进了Horn和Johnson的结果,同时也改进了其它文献中的一些结果.
Lower bound on the smallest eigenvalue τ(A ★ B) for the Fan product of two nonsingular M-matrices A and B is important problem in the matrices theories. New lower bounds on the smallest eigenvalue are given by using Brauer theorem and Gerschgorin theorem in this paper. Numerical example shows that of Horn and Johnson in some cases, and also the new estimating formulas improve the result improve some results in the other literature.
作者
陈付彬
CHEN Fu-bin(Science Department,Kunming University of Science and Technology Oxbridge College,Kunming 650106 China)
出处
《数学的实践与认识》
北大核心
2018年第13期250-255,共6页
Mathematics in Practice and Theory
基金
国家自然科学基金(11501141)
云南省教育厅科学研究基金(2018JS747,2014Y645,2015C107Y)