期刊文献+

基于遗传RBF神经网络的高速电主轴热误差建模 被引量:14

High-speed motorized spindle thermal error modeling based on genetic RBF neural network
原文传递
导出
摘要 针对高速电主轴热误差建模,对HMC80加工中心电主轴单元进行了热误差测量实验,综合利用模糊聚类法和灰色关联度分析法对测温点进行优化,使测温点数量从8个减少到3个,该方法同时考虑了温度变量之间的复共线性和测温点温度与热误差之间的相关性.以优化后的温度变量为输入,热误差为输出,建立基于遗传算法径向基函数(RBF)神经网络预测模型,并与其他方法进行比较.分析结果表明:相比于传统RBF神经网络法和多元线性回归法,遗传RBF神经网络建立的热误差预测模型精度更高、鲁棒性更强. The experiment of HMC80 electric spindle was carried out for high-speed motorized spindle thermal error modeling.Fuzzy clustering and grey correlation analysis was conducted in temperature classification,and the number of temperature measuring sensor was reduced from 8 to 3.This method considered the multicollinearity between temperature variables,and the correlation between temperature and thermal error concurrently.Radial basis function neural network modeling was established based on the genetic algorithm,and the optimized three temperature candidates were used as the input while the thermal error was used as the output.Compared with other approaches,analysis results show that the genetic algorithm radial basis function neural network model performs better than the traditional radial basis function neural network model and multiple linear regression model in accuracy and robustness.
作者 张捷 李岳 王书亭 苟卫东 Zhang Jie;Li Yue;Wang Shuting;Gou Weidong(a School of Energy and Power Engineering,b School of Mechanical Science and Engineering,Huazhong University of Science and Technology,Wuhan 430074,China;Qinghai Huading Industries Co.Ltd.,Xining 810018,China)
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2018年第7期73-77,共5页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家科技重大专项资助项目(2013ZX04005-011) 国家自然科学基金资助项目(51675197) 青海省科技计划资助项目(2015-GX-Q18A)
关键词 高速电主轴 热误差建模 模糊聚类 灰色关联度 遗传RBF神经网络 high-speed motorized spindle thermal error modeling fuzzy clustering grey correlation genetic algrithm radial basisfunction (RBF) neural network
  • 相关文献

参考文献4

二级参考文献98

  • 1沈金华,赵海涛,张宏韬,杨建国.数控机床热补偿中温度变量的选择与建模[J].上海交通大学学报,2006,40(2):181-184. 被引量:28
  • 2Ramesh R, Mannan M A, Poo A N. Error Compensation in Machine Tools - a Review Part I1: Thermal Errors[ J]. International Journalof Machine Tools and Manufacture,2000, 40 (9) : 1257 - 1284.
  • 3Bryan J B. International status of thermal error research[ J]. An- nals of CIRP, 1990, 39 (2) : 645 - 656.
  • 4Ramesh R,Mannan M A,Poo A N. Error Compen sation in Machine Tools-a Review Part Ⅱ:Thermal Errors[J].{H}INTERNATIONAL Journal OF MACHINE TOOLS & MANUFACTURE,2000,(9):1257-1284.
  • 5Yang S,Yuan J,Ni J. Accuracy Enhancement of a Horizontal Machining Center by Real-time Error Compensation[J].Journal of Manufacturing Sys tems,1996,(2):113-124.
  • 6Yang J G,Yuan J X,Ni J. Thermal Error Mode Analysisand Robust Modeling for Error Compensation on a CNC Turning Center[J].{H}INTERNATIONAL Journal OF MACHINE TOOLS & MANUFACTURE,1999.1367-1381.
  • 7Ma Youji. Sensor Placement Optimization for Ther mal Error Compensation on Machine Tools[D].Michigan:University of Michigan,2001.
  • 8Lee J H,Yang S H. Statistical Optimization and Assessment of a Thermal Error Model for CNC Machine Tools[J].{H}INTERNATIONAL Journal OF MACHINE TOOLS & MANUFACTURE,2002.147-155.
  • 9Creighton E,Honegger A,Tulsian D. Analysis of Thermal Errors in a High-speed Micro-milling Spindle[J].{H}INTERNATIONAL Journal OF MACHINE TOOLS & MANUFACTURE,2010.386-393.
  • 10刘思峰;郭天榜;党耀国.灰色系统理论及其应用[M]{H}北京:科学出版社,1999.

共引文献95

同被引文献139

引证文献14

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部