摘要
本文以沪深300的10个行业指数为实证对象,利用主成分差分法和幂律分布的长尾特征,预测出沪深300指数CSI300的系统性风险信号发生的3个时点,准确地探出了沪深300指数的大底和大顶部位的转折时点;并选择PPM模型事后检验法得到股市的结构突变点,将主成分差分法预测出的长尾时点与这些结构突变点进行对比,结果支持了主成分差分法的有效性;表明了沪深300行业指数除了具有表征、分析评价、投资三大功能外,预测功能亦是引人注目。
Choosing 10 industry indexes of CSI 300 as empirical objects, we apply the method of principal component difference and the long tail characteristic of power-law distribution to predict three risk signal points when CSI300 systemic risk occurs, which accurately identifies the turning points of the bottom and high top positions in CSI300. In addition, we select the PPM model which is a post-test method to acquire the structure break points of the stock market. With the comparison of the long-tail point predicted from principal component difference method with these structure mutations, the results prove the effectiveness of the principal component difference method. The research shows that CSI300 fore- cast function is worth becoming the center of investor attention in addition to the traditional functions of representation, analysis and evaluation, and investment.
出处
《企业经济》
CSSCI
北大核心
2018年第7期188-192,共5页
Enterprise Economy
基金
国家自然科学基金项目“大宗农产品价格内涵属性之效应分解研究---基于自变量扰动循环的数据挖掘集成技术”(项目编号:71661011)
江西省研究生创新专项项目“我国上市公司‘鲍曼悖论’现象检验及研究”(项目编号:YC2016-S237)
关键词
沪深300行业指数
主成分差分法
PPM模型
系统性风险信号
幂律分布
CSI 300 industry indexes
principal component difference method
product partition model
systematic risk signal
power law distribution