期刊文献+

杂波背景下自适应IMM机动目标跟踪算法 被引量:7

Multiple Target Tracking Algorithm Based on Adaptive IMM Algorithm in Clutter
下载PDF
导出
摘要 针对杂波背景下多机动目标跟踪问题,提出一种基于时变转移概率交互式多模型(IMM)的模糊数据关联跟踪算法。首先,针对传统IMM算法模型转移概率假设为常数导致模型间过度竞争的问题,基于贝叶斯理论,推导出一种时变模型转移概率IMM算法,增强了优势模型的利用率;其次,针对传统JPDA算法由于聚矩阵拆分而导致的计算组合爆炸问题,利用模糊聚类的方法,直接计算相关波门内候选量测与目标间的关联概率,用概率加权对目标进行状态和协方差的更新。仿真实验表明:算法对不同机动目标的跟踪适应性得到增强,相比传统的JPDA算法,在保证跟踪精度的基础上其时间性能比较优越,是一种较为实用的工程应用算法。 The fuzzy probabilistic data association algorithm based on the interacting multiple model ( IMM ) algorithm with the time-varying transition probability is proposed in this paper to solve the problem of muhiple maneuvering targets tracking in clutter. First, the improved IMM algorithm uses the time-varying transition probability based on Bayes theorem to decrease the excessive competition when the transition probability is constant value in traditional algorithm. Second, to solve the problem of the combina- tion explosion when separating the polymer matrix, the proposed algorithm calculates the association probability on the basis of fuzz- y clustering, which is used as weight to update target's state and covariance. Simulation results show that the tracking adaptation to different targets has been enhanced and the real-time performance of the tracking is improved under the premise of tracking accura- cy compared with traditional JPDA algorithm. This is a practical engineering application algorithm.
作者 杜明洋 毕大平 王树亮 DU Mingyang;BI Daping;WANG Shuliang(College of Electronic Engineering,National University of Defense Technology,Hefei 230037,Chin)
出处 《现代雷达》 CSCD 北大核心 2018年第7期47-53,共7页 Modern Radar
关键词 多目标跟踪 交互式多模型联合概率数据关联 转移概率 数据互联 模糊聚类 multiple targets tracking IMMJPDA transition probability data association fuzzy clustering
  • 相关文献

参考文献8

二级参考文献72

共引文献115

同被引文献69

引证文献7

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部