摘要
在孤子理论中,如何构造新的超孤子族是个重要的问题.基于矩阵李超代数,我们借助于零曲率方程构造了一个新的六分量超NLS-MKd V族,并给出了超可积方程不同的约化.利用超迹恒等式,我们得到了非线性超可积方程族的超Hamilton结构.最后,通过引入两个变量,我们建立了六分量超可积NLS-MKd V族的无穷守恒律.特别地,费米变量在超可积系统计算过程中起了重要作用.
How to construct a new super soliton equation hierarchy is an important problem in soliton theory. In this paper, based on the matrix Lie super algebras, we obtain a new six-component super NLS-MKdV hierarchy with the aid of zero curvature equation, and gain different reductions for the super integrable equations. Super trace identity is used to furnish the super Hamiltonian structures for the resulting nonlinear super integrable hierarchy. Finally, we establish infinite conservation laws for the integrable six-component super NLS-MKdV hierarchy by introducing two variables. Especially, in the process of computation, Fermi variables play an important role in super integrable systems.
作者
魏含玉
夏铁成
WEI Hanyu1 ,XIA Tiecheng2(1.College of Mathematics and Statistics,Zhoukou Normal University,Zhoukou 466001;2.Department of Mathematics,Shanghai University,Shanghai 20044)
出处
《工程数学学报》
CSCD
北大核心
2018年第3期355-366,共12页
Chinese Journal of Engineering Mathematics
基金
The National Natural Science Foundation of China(11547175
11271008
11501526)
the Aid Project for the Mainstay Young Teachers in Henan Provincial Institutions of Higher Education of China(2017GGJS145)