期刊文献+

一个新6分量超NLS-MKdV族的超Hamilton结构和守恒律(英文) 被引量:1

Conservation Laws and Super Hamiltonian Structures for a New Six-component Super NLS-MKdV Hierarchy
下载PDF
导出
摘要 在孤子理论中,如何构造新的超孤子族是个重要的问题.基于矩阵李超代数,我们借助于零曲率方程构造了一个新的六分量超NLS-MKd V族,并给出了超可积方程不同的约化.利用超迹恒等式,我们得到了非线性超可积方程族的超Hamilton结构.最后,通过引入两个变量,我们建立了六分量超可积NLS-MKd V族的无穷守恒律.特别地,费米变量在超可积系统计算过程中起了重要作用. How to construct a new super soliton equation hierarchy is an important problem in soliton theory. In this paper, based on the matrix Lie super algebras, we obtain a new six-component super NLS-MKdV hierarchy with the aid of zero curvature equation, and gain different reductions for the super integrable equations. Super trace identity is used to furnish the super Hamiltonian structures for the resulting nonlinear super integrable hierarchy. Finally, we establish infinite conservation laws for the integrable six-component super NLS-MKdV hierarchy by introducing two variables. Especially, in the process of computation, Fermi variables play an important role in super integrable systems.
作者 魏含玉 夏铁成 WEI Hanyu1 ,XIA Tiecheng2(1.College of Mathematics and Statistics,Zhoukou Normal University,Zhoukou 466001;2.Department of Mathematics,Shanghai University,Shanghai 20044)
出处 《工程数学学报》 CSCD 北大核心 2018年第3期355-366,共12页 Chinese Journal of Engineering Mathematics
基金 The National Natural Science Foundation of China(11547175 11271008 11501526) the Aid Project for the Mainstay Young Teachers in Henan Provincial Institutions of Higher Education of China(2017GGJS145)
关键词 超Hamiltonian结构 守恒律 超NLS-MKdV族 Fermi变量 super Hamiltonian structure conservation law super NLS-MKdV hierarchy Fermi variable
  • 相关文献

参考文献6

二级参考文献95

  • 1MA WENXIU.BINARY NONLINEARIZATION FOR THE DIRAC SYSTEMS[J].Chinese Annals of Mathematics,Series B,1997,18(1):79-88. 被引量:8
  • 2Sun H Z and Han Q Z 1999 Lie Algebras and Lie Super Algebras and Their Applications in Physics (Beijing: Peking University) p 157.
  • 3Wang P, Fang J H and Wang X M 2009 Chin. Phys. Lett. 26 034501.
  • 4Pang T, Fang J H, Zhang M J, Lin P and Lu K 2009 Chin. Phys. Lett. 26 070203.
  • 5Jia X Y and Wang N 2009 Chin. Phys. Lett 26 080201.
  • 6Fang J H, Zhang M J and Lu K 2009 Chin. Phys. Lett. 26 110202.
  • 7Zhang M J, Fang J H, Lu K and Zhang K J 2009 Chin. Phys. Lett. 26 120201.
  • 8Tu G Z 1989 J. Math. Phys. 30 330.
  • 9Tu G Z 1990 J. Phys. A: Math. Gen. 23 3903.
  • 10Ma W X 1992 Chin. J. Comtemp. Math. 13 79.

共引文献27

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部