期刊文献+

裂缝压力衰竭对致密储层基质-裂缝间非稳态窜流规律的影响 被引量:2

Influence of fracture pressure depletion on transient inter-porosity flow characteristic between matrix and fracture in tight oil reservoir
原文传递
导出
摘要 致密油储层基质渗透率极低,应力敏感性强,传统的基于拟稳态假设和定压力边界条件得到的常量形状因子模型无法准确表征致密储层基质-裂缝间的非稳态窜流规律。通过考虑致密储层基质应力敏感及裂缝压力衰竭的影响,建立了致密储层基质-裂缝不稳定窜流模型。利用Pedrosa代换和正则摄动法对模型进行了线性化处理,通过Laplace变换求得了在Laplace空间下的解析解,结合Duhamel原理得到了考虑裂缝压力变化的解。通过与Hassanzadeh模型计算结果以及精细网格有限元解的结果进行对比,验证了模型的正确性。利用新模型研究了基质应力敏感以及裂缝压力衰竭对基质-裂缝间窜流规律的影响。研究表明:考虑裂缝压力衰竭影响后,应力敏感对形状因子的影响更为显著;裂缝压力递减越快,初期形状因子的值越大,但是递减的越早且递减速度越快,导致平衡后形状因子值越小;裂缝压力递减速度很小时,窜流速度会先上升达到平衡然后再递减。 The tight formation has the characteristics of the extremely low permeability and the sensitivity of the permeability to the effective stress. The conventional constant shape factor model cannot accurately characterize the transient inter-porosity flow characteristics. In this paper, a new model is established by considering the effect of the stress sensitivity and the time-dependent fracture pressure boundary condition. The Pedrosa substitution and the perturbation method are applied to eliminate the nonlinearity of the model. The Laplace transformation method is used to obtain the analytical solution in the Laplace domain. Based on the Duhamel principle, the solution under the time-dependent fracture pressure boundary condition is obtained. The results obtained by the new model are compared with those obtained by the model of Hassanzadeh and the finite element analysis to validate the new model. Finally, the influences of the stress- sensitivity and the decreasing velocity of the fracture pressure on the shape factor and the velocity of the inter-porosity flow are discussed. It is shown that the larger the stress sensitivity coefficient, the smaller the value of the shape factor and the smaller the velocity of inter- porosity flow will be. The fracture pressure depletion has a significant effect on the inter-porosity flow. The effects of the matrix stress sensitivity become more pronounced when the effects of the fracture pressure depletion are considered. Moreover, the shape factor and the velocity of inter-porosity flow are different in different stages as the fracture pressure depletion coefficient is not the same. The velocity of the inter-porosity flow will increase first to reach an equilibrium and then decrease when the decreasing rate of the fracture pressure is small, which is different from the results obtained under the constant fracture pressure boundary condition. The estimation of the velocity of the inter-porosity flow would be inaccurate if the effect of the fracture pressure depletion is not take into account. The new model provides a theoretical basis for the development of tight reservoirs and can be used in the study of the well test analysis and the numerical simulation of multi-fractured horizontal wells in a tight formation.
作者 黄山 姚约东 王丽 马若雨 王金伟 郭青霖 HUANG Shan;YAO Yuedong;WANG Li;MA Ruoyu;WANG Jinwei;GUO Qinglin(State Key Laboratory of Petroleum Resources and Prospecting,China University of Petroleum-Beijing,Beijing 102249,China;College of Petroleum Engineering,China University of Petroleum-Beijing,Beijing 102249,China;Mangement Department of Major Development Experiment Project in Operation Area of Fengcheng Oilfield,PetroChina Xinjiang Oil Field Company,Karamay 834000,China)
出处 《科技导报》 CAS CSCD 北大核心 2018年第13期65-72,共8页 Science & Technology Review
基金 国家重点基础研究发展计划项目(2015CB250900) 国家自然科学基金项目(40974055) 新世纪优秀人才支持计划项目(NCET-13-1030)
关键词 致密油藏 基质-裂缝 非稳态窜流 时变形状因子 裂缝压力衰竭 tight reservoir matrix-fracture transient inter-porosity flow time-dependent shape factor fracture pressure depletion
  • 相关文献

参考文献2

二级参考文献38

  • 1王敬,刘慧卿,刘仁静,徐杰.考虑启动压力和应力敏感效应的低渗、特低渗油藏数值模拟研究[J].岩石力学与工程学报,2013,32(S2):3317-3327. 被引量:23
  • 2李传亮.储层岩石的应力敏感性评价方法[J].大庆石油地质与开发,2006,25(1):40-42. 被引量:117
  • 3尹尚先,王尚旭.不同尺度下岩层渗透性与地应力的关系及机理[J].中国科学(D辑),2006,36(5):472-480. 被引量:23
  • 4国家能源局.SY/T5358-2010储层敏感性流动实验评价方法[s].北京:石油工业出版社,2010.
  • 5JONES F O, OWENS W W. A laboratory study of low-permeability gas sands[J]. Journal of Petroleum Technology, 1980, 32(9): 1631-1640.
  • 6DAVID C, WONG T F, ZHU W L, et al. Laboratory measurement of compaction-induced permeability change in porous rocks: Implications for the generation and maintenance of pore pressure excess in the crust[J]. Pure and Applied Geophysics, 1994, 143: 425-456.
  • 7SIGAL R F. The pressure dependence of permeability[J]. Petrophysics, 2002, 43 (2): 92-102.
  • 8DONG J J, HSU J Y, WU W J, et al. Stress-dependence of the permeability and porosity of sandstone and shale from TCDP hole-A[J]. International Journal of Rock Mechanics & Mining Sciences, 2010, 47(7): 1141-1157.
  • 9TERZAGHI K. Principles of soil mechanics[J]. Engineering News Record, 1925, 95(3): 874-878.
  • 10BERNABLE Y. The effective pressure law for permeability in Chelmsford granite and Barre granite[J]. International Journal of Rock Mechanics & Mining Science & Geomechanics Abstracts, 1986 23(3): 267-275.

共引文献41

同被引文献76

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部