期刊文献+

面向作文自动评分的优美句识别 被引量:15

Elegart Sentence Recognition for Automated Essay Scoring
下载PDF
导出
摘要 语言优美是学生写作能力中重要的一部分。该文提出一个面向作文自动评分的作文优美句识别任务,主要识别中学生中文作文中的优美句。相比传统文本分类任务,优美句识别更加难以用特征工程的方式解决。因此,该文提出一种基于卷积神经网络(CNN)和双向长短时记忆(BiLSTM)网络的混合神经网络结构进行优美句识别,并和CNN、BiLSTM网络进行了对比。实验证明,混合神经网络的准确率最高,达到89.23%,F1值与BiLSTM相当,达到75.39%。此外,该文将优美句子特征用于作文自动评分任务,可使计算机评分和人工评分的大分差比例下降21.41%。 This paper proposs the task of elegant sentence recognition in Chinese essays of high school students for Automated Essay Seoring(AES). To deal withthis task clellenging the classical text classification plus feature engi- neering ,this paper presents a deep neural network combining Convolutional Neural Network(CNN) and Bi direction- al Long Short Term Memory(BiLSTM) networks to recognize grace sentences. The experiment results show that our joint neural network ranks to in precision (89.23%),with a comparable F1 score to BiLSTM(75.39%). We fi- nally apply the graceful sentence features to the AES task, which can reduce the large-margin prediction error by 21.41%.
作者 付瑞吉 王栋 王士进 胡国平 刘挺 FU Ruiji;WANG Dong;WANG Shijin;HU Guoping;LIU Ting(iFLYTEK Research,Hefei,Anhui 518057,China;Joint Laboratory of HIT and iFLYTEK,Beijing 100094,China;Research Center for Social Computing and Information Retrieval,School of Computer Science and Technology,Harbin Institute of Technology,Harbin,Heilongjiang 150001,China)
出处 《中文信息学报》 CSCD 北大核心 2018年第6期88-97,共10页 Journal of Chinese Information Processing
基金 国家863计划课题(2015AA015409)
关键词 优美句识别 深度神经网络 作文自动评分 graceful sentence recognition deep neural networks automated essay scoring
  • 相关文献

参考文献4

二级参考文献16

  • 1D. D. Lewis. Naive (Bayes) at forty: The independence assumption in information retrieval. In: Proc. of the 10th European Conf. on Machine Learning. New York: Springer,1998, 4-15.
  • 2Y. Yang, X. Lin. A re-examination of text categorization methods. In: The 22nd Annual Int'l ACM SIGIR Conf. onResearch and Development in the Information Retrieval. NewYork: ACM Press, 1999.
  • 3Y. Yang, C. G. Chute. An example based mapping method for text categorization and retrieval. ACM Trans. on Information Systems, 1994, 12(3): 252 -277.
  • 4E. Wiener. A neural network approach to topic spotting. The 4th Annual Syrup. on Document Analysis and Information Retrieval,Las Vegas, NV, 1995.
  • 5R. E. Schapire, Y. Singer. Improved boosting algorithms using confidence-rated predications. In: Proc. of the 11th Annual Conf.on Computational Learning Theory. New York: ACM Press,1998. 80--91.
  • 6T. Joachims. Text categorization with support vector machines:Learning with many relevant features. In: Proc. of the 10th European Conf. on Machine Learning. New York: Springer,1998. 137-142.
  • 7Y. Yang. An evaluation of statistical approaches to text categorization. Information Retrieval, 1999, 1 ( 1 ) : 76-- 88.
  • 8R. Adwait. Maximum entropy models for natural language ambiguity resolution: [ Ph. D. dissertation ] . Pennsylvania:University of Pennsylvania, 1998.
  • 9R. Adwait. A maximum entropy model for part-of-speech tagging. The Empirical Methods in Natural Language Processing Conference, Philadelphia, USA, 1996.
  • 10Adam L. Berger, Stephen A. Della Pietra, Vincent J. Della Pietra. A maximum entropy approach to natural language processing. Computational Linguistics, 1996, 22( 1 ) : 38-- 73.

共引文献95

同被引文献104

引证文献15

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部