期刊文献+

基于小波包分析的组合模型的专利申请量预测

下载PDF
导出
摘要 运用小波包多分辨分解和重构技术,将专利申请量时间序列分解为同尺度的趋势项、季节项、循环项和不规则项等四项内在规律项,再把分解后的四项进行单支重构,针对重构各项的统计特征分别采用ARIMA和ARMA不同模型进行建模预测,最后根据各项预测结果计算出专利申请量的预测值。通过对分类号为A61B专利申请量的分析和验证,表明基于小波包分析的组合预测模型比传统单一预测模型的预测精度更高。
出处 《科技传播》 2011年第17期226-227,共2页 Public Communication of Science & Technology
  • 相关文献

参考文献2

二级参考文献16

  • 1张伟,胡昌华,焦李成.最小二乘AR模型的惯性器件故障预测[J].仪器仪表学报,2006,27(z2):1755-1757. 被引量:5
  • 2ZHANG J, TIAN W F. Traffic forecasting of mobile communication in call center [J]. IEEE ICCSIT, 2010, 160-164.
  • 3JAEGER H. Short term memory in echo state networks. Technical report [J]. German National Research Center for Information Technology, 2001.
  • 4ANTONELO E A, SCHRAUWEN B, et al. Generative modeling of autonomous robots and their environments using reservoir computing [J]. Neural Processing Letters, 2007, 26(3): 233-249.
  • 5SKOWRONSKI M D, HARRIS J G. 2007 Special issue: Automatic speech recognition using a predictive echo state network classifier [J]. Neural networks, 2007, 20(3) 414-423.
  • 6VERSTRAETEN D, SCHRAUWEN B. Isolated word recognition with the liquid state machine: a case study [J]. Information Processing Letters, 2005, 95(6): 521-528.
  • 7JAEGER H. Reservoir riddles: suggestions for echo state network research [J]. Proceedings of the International Joint Conference on Neural Networks, 2005: 1460-1462.
  • 8JAEGER H. Echo state network [J]. Scholarpedia, 2007, 2(9): 2330-2339.
  • 9FRANCIS W, BENJAMIN S. Band-pass reservoir computing[J]. 2008 International Joint Conference on Neural Networks, 1-S June, 2008, 3204-3209.
  • 10JAEGER H. The "echo state" approach to analyzing and training recurrent neural networks [J]. Technical Report GMD Report 148, German National Research Center for Information Technology, 2001.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部