期刊文献+

超声速湍流燃烧的有限速率源项封闭方法

Finite Rate Closure Method of Chemical Source Term in Supersonic Turbulent Combustion
下载PDF
导出
摘要 为了发展超声速湍流燃烧中化学反应源项的封闭方法,更精确地模拟湍流燃烧相互作用,引入两类化学反应有限速率模型:PaSR(Partially Stirred Reactor)模型及其可压缩性修正模型(C-PaSR),并用于德国宇航研究中心(DLR)的氢燃料超燃冲压发动机燃烧室的数值模拟。计算结果显示,支板后形成的抬举火焰在剪切层产物回流和喷氢的共同作用下稳定在支板后1~2倍支板高度的位置,流场结构与实验纹影符合较好。引入模型后的不同截面的温度和轴向速度均有所改善,特别是较远处温度场与实验结果吻合非常好。C-PaSR模型的预测结果比PaSR模型略有改善。通过化学反应源项修正系数分析了流场各处燃烧和混合的特征时间尺度相对大小,有利于理解湍流燃烧相互作用的过程。 In order to consider the interaction between turbulence and combustion in the closure of chemical source term in supersonic turbulent combustion,two finite rate methods,Pa SR(Partially Stirred Reactor)model and its compressible modified(C-PaSR)model were used to simulate the supersonic combustion flowfield in German Aerospace Center(DLR)scramjet combustor model. Because of the recirculation of products in shear layer and the hydrogen injection,a lifted flame was fixed behind the strut for one to two times height of it. With the methods,parameters like velocity and temperature showed better agreement with experiment results at three different sections,especially far from the injector. Results from case with the C-PaSR model were to some extent better than that with the PaSR model. The domination between chemical time scale and turbulent time scale in the flowfield were analyzed according to the modified chemical source term coefficient. It helped to investigate the turbulence combustion interaction.
作者 向周正 杨顺华 XIANG Zhou-zheng;YANG Shun-hua(Science and Technology on Scramjet Laboratory of Hypervelocity Aerodynamics Institute,CARDC,Mianyang 621000,China)
出处 《推进技术》 EI CAS CSCD 北大核心 2018年第7期1523-1528,共6页 Journal of Propulsion Technology
关键词 超声速湍流燃烧 化学反应源项 封闭方法 可压缩性修正 Supersonic turbulent combustion Chemical source term Closure method Compressible modification
  • 相关文献

参考文献3

二级参考文献28

  • 1杨武兵,张会强,王希麟,郭印诚,林文漪.空间发展平板混和层流动的大涡模拟-3D与2D模拟的比较[J].工程热物理学报,2004,25(6):1046-1048. 被引量:3
  • 2Swaminathan N, Bilger R W. Assessment of Combustion Submodels for Turbulent Nonprenixed Hydrocarbon names [J]. Combustion and Flame, 1998, 116 (4):519-545.
  • 3Swaminathan N, Bilger R W. Comment and Reply on the "Assessment of Computation Submodels for Turbulent Non-premixed Hydrocarbon flames" [J]. Combustion and Flame, 1999, 116:675 - 677.
  • 4Waidmann W, Alff F, Bǒam M, et al. Supersonic Combustion of Hydrogen/air in a SCRAMJET Combustion Chamber [ J ]. Space Technology, 1995, 15 (6): 421-429.
  • 5Oevermann M. Numerical Investigation of Turbulent Hydrogen Combustion in Ascramjet Using Flame-let Modeling [J]. Aerospace Science and Technology,2004,4:463 - 480.
  • 6Shu C W. High Order ENO and WENO Schemes for Computational Fluid Dynamics [ C ]//High-Order Methods for Computational Physics, 1999.
  • 7蔡国飚,徐大军.高超声速飞行器技术[M].北京:科学出版社,2012.
  • 8周建兴,朴英,岂兴明,祝剑虹.超声速燃烧室内氢气燃烧的三维数值研究[J].航空动力学报,2007,22(12):1984-1988. 被引量:2
  • 9Clark Ryan J, Shrestha SO Bade. A review of numerical sim- ulation and modeling of combustion in scramjets [ J ]. Pro- ceedings of the Institution of Mechanical Engineers, Part G : Journal of Aerospace Engineering, 2014:1-23.
  • 10Genin Franklin, Menon Suresh. Simulation of turbulent mix- ing behind a strut injector in supersonic flow [ J ]. AIAA Journal, 2009, 48(3) :526-539.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部